Гибридная интегральная схема
Использование: изобретение относится к электронной технике. Сущность изобретения: обеспечивается улучшение массогабаритных и электрических характеристик, что достигается выполнением углублений на обеих сторонах платы, в которые установлены кристаллы бескорпусных полупроводниковых приборов таким образом, что они расположены на одном уровне с поверхностью платы, при этом толщина связующего вещества выбрана равной 1-30 мкм. Кроме того, предлагаемая конструкция ГИС позволит увеличить плотность расположения упаковки кристаллов ГИС при сохранении целостности и прочности конструкции за счет оптимального выбора расстояний между углублениями как по горизонтали, так и по вертикали ГИС. 2 ил.
Изобретение относится к полупроводниковой микроэлектронике, в частности к гибридным интегральным двухсторонним схемам высокочастотного, СВЧ и крайневысокочастотного диапазонов.
Известна гибридная интегральная схема СВЧ, содержащая диэлектрическую твердую плату, имеющую топологический рисунок металлизации на обеих сторонах, бескорпусные полупроводниковые приборы, установленные и закрепленные связующим веществом на обеих сторонах платы и соединенные с топологическим рисунком металлизации [1] Данная конструкция гибридной интегральной схемы характеризуется недостаточно высокими массогабаритными и электрическими характеристиками. Наиболее близким техническим решением является гибридная интегральная схема, содержащая диэлектрическую плиту с топологическим рисунком металлизации и выемками (глухими отверстиями), в которых с помощью связывающего вещества закреплены полупроводниковые кристаллы, причем поверхность кристаллов с контактными площадками лежит в одной плоскости с поверхностью платы, а контактные площадки кристаллов электрически соединены с топологическим рисунком металлизации, выемки (глухие отверстия) в диэлектрической плате выполнены в виде углублений, глубина которых выбрана превышающей на 10-30 мкм толщину кристаллов, закрепленных на дне углублений, а зазоры между стенками каждого углубления и кристаллов выбраны равными 20-100 мкм [2] Данная конструкция гибридной интегральной схемы характеризуется недостаточно высокими массогабаритными и электрическими характеристиками, связанными с недостаточной плотностью расположения кристаллов полупроводниковых приборов и большой длиной коммутации. Целью изобретения является улучшение электрических и массогабаритных характеристик. Цель достигается тем, что в известной конструкции гибридной интегральной схемы, содержащей диэлектрическую подложку с рисунком проводников на обеих сторонах подложки и глухими отверстиями, выполненными с одной стороны подложки, в которых с помощью связующего вещества установлены кристаллы, заподлицо с поверхностью подложки, с другой стороны подложки выполнены дополнительно глухие отверстия, причем толщина участка подложки между рядом расположенными отверстиями составляет 50-500 мкм, толщина участка подложки между совпадающими в плане отверстиями, расположенными на обеих сторонах подложки, составляет 50-980 мкм, толщина перегородки между соседними отверстиями, расположенным на противоположных сторонах платы с суммарной глубиной, превышающей толщину платы, выбрана равной 50-500 мкм. Выполнение глухих отверстий (углублений) на обеих сторонах диэлектрической подложки (платы) и соответствующее расположение в них кристаллов бескорпусных полупроводниковых приборов таким образом, что их лицевые поверхности с контактными площадками находятся заподлицо с поверхностью подложки, обеспечивает, во-первых, минимальные длины проводников и коммутации схемы, а значит, улучшение электрических характеристик, во-вторых, уменьшение веса и размеров схемы, а значит, улучшение массогабаритных характеристик. Кроме того, предлагаемый выбор пределов толщины перегородки между двумя отверстиями обеспечивает максимальную плотность расположения кристаллов бескорпусных полупроводниковых приборов при сохранении целостности и прочности конструкции. Толщина участка подложки между рядом расположенными отверстиями, а также между совпадающими в плане отверстиями и толщина перегородки между соседними отверстиями менее 50 мкм связаны с технологическими возможностями оборудования [3] Толщина участка подложки между рядом расположенными отверстиями и между соседними отверстиями, расположенными на противоположных сторонах, более 500 мкм нежелательна, так как приводит к ухудшению массогабаритных характеристик. Толщина участка подложки между совпадающими отверстиями более 980 мкм ограничена соотношением в СВЧ диапазоне максимальной толщиной подложки 1 мм и минимальной толщиной используемых кристаллов 10 мкм. Улучшение электрических характеристик подтверждается расчетом. Рассмотрим упрощенную электрическую схему преобразователя частоты на варакторных диодах (см. фиг.2), где C1=0,24 пф, C2=0,95 пф L







K постоянный коэффициент;
Lmax, Lmin максимальное и минимальное значение индуктивности соединительных перемычек. Подставляя в (1) значение DL для конструкций прототипа и предлагаемой получим:


Вычислим величину уменьшения разброса потерь преобразования для предлагаемой конструкции по сравнению с конструкцией прототипа,

что подтверждает улучшение электрических параметров предлагаемой конструкции. Толщина перегородок между соседними отверстиями, уточненным в формуле изобретения, менее 50 мкм, может приводить к образованию микротрещин в подложке и нарушению ее целостности. На фиг. 1 изображена гибридная интегральная схема, разрез. На фиг. 1 позициями обозначены: диэлектрическая подложка 1, топологический рисунок проводников 2, глухие отверстия в подложке 3, кристаллы бескорпусных полупроводниковых приборов 4, связующее вещество 5, контактная площадка кристалла бескорпусного полупроводникового прибора 6, электрическое соединение кристалла и проводников подложки 7, стенка между двумя расположенными отверстиями 8, остаточная толщина участка подложки между совпадающими отверстиями 9, перегородка между соседними отверстиями, расположенными на противоположных сторонах и выполненными с суммарной глубиной, превышающей толщину плиты 10. Пример. Рассмотрим в качестве примера конструкцию функциональной СВЧ схемы балансного преобразования. СВЧ схема состоит из диэлектрической например, поликоровой, подложки 1, на обеих сторонах которой имеется топологический рисунок проводников 2. На обеих сторонах подложки 2 имеются глухие отверстия 3, выполненные, например, лазерной обработкой на установке "Кантата-1" 3. В отверстиях 3 на лицевой стороне подложки 1 размещены кристаллы бескорпусных полупроводниковых приборов 4, например, варакторных диодов типа ТС3.362.038, объединенных в диодные секции с топологическим рисунком проводников 2, подсоединены к гибридному 3 дБ мосту на связанных копланарных линиях. Кристаллы 4 закреплены в отверстиях 3 подложки 1 при помощи связующего вещества 5, например клея ЭЧЭ-С ЫУО.028.052ту. На обратной стороне подложки 1 расположены в отверстиях 3 кристаллы 4, например, смесительных диодов типа 3А137А-5, образующие две детекторные секции, обеспечивающие функциональный контроль СВЧ сигналов. Связь смесительных диодов с линией передачи входного СВЧ сигнала и линией передачи сигнала промежуточной частоты осуществляется с помощью емкостной связи, образованной площадками проводящего материала в составе топологического рисунка проводников 2, расположенных на противоположных (обеих) сторонах подложки. Все кристаллы 4 диодов установлены таким образом, что их поверхности находятся заподлицо с плоскостью поверхностей подложки 1. Длина соединительных проводников составляет примерно 0,05-0,25 мм. Устройство работает следующим образом. В СВЧ схеме, например, балансного преобразователя частоты на бескорпусных диодах 4 с функциональным контролем мощности входного СВЧ-сигнала и мощности сигнала промежуточной частоты. Модуляция коэффициента отражения осуществляется с помощью изменения емкости варакторного диода при подаче на него напряжения сигнала промежуточной частоты. Реализация функциональных возможностей схемы в целом определяется реализацией при определенных сочетаниях параметров полупроводниковых приборов, например диодов, и значений сосредоточенных реактивных согласующих элементов, выполненных в топологическом рисунке микросхемы на обеих сторонах подложки. Связь сместительных диодов с линией передачи входного СВЧ сигнала и линией передачи сигнала промежуточной частоты осуществляется с помощью емкостной связи, образованной подложками проводящего материала, расположенными на противоположных сторонах подложки. Предлагаемая конструкция гибридной интегральной схемы обеспечит улучшение электрических параметров за счет уменьшения длины соединительных проводников в 3-4 раза по сравнению с прототипом. Относительный же разброс длины соединительных проводников ввиду отсутствия плохо контролируемого изгиба не превышает 10% что сокращает разброс длины по сравнению с прототипом на 10% Это обуславливает значительное снижение реактивного сопротивления соединительных проводников с одновременным уменьшением их отклонения относительно расчетных значений и, как следствие, повышает повторяемость и стабильность электрических характеристик, например коэффициента усиления в усилительных каскадах и коэффициента преобразования в преобразовательных схемах, повышая процент выхода годных в производстве. Применение двухстороннего расположения заглубленных кристаллов позволит значительно увеличить плотность их расположения на подложке и улучшить массогабаритные характеристики. Кроме того, уменьшение длины соединительных проводников приведет к сокращению расхода драгметалла в случае применения золотой проволоки, плющенки и т.д. Источники информации
1. Патент США N 4423468 от 27.12.83, кл. H05K 7/06, 1/14, 361-404. 2. Авторское свидетельство СССР N 1667571, приоритет 02.06.89. 3. Электронная техника, сер. Электроника СВЧ, вып. 12 (384), 1985, с. 56-60. 4. Буданов В. Н. Анализ оптимального режима работы микрополоскового преобразователя частоты на варакторном диоде. Электронная техника. Сер. 1. Электроника СВЧ, 1985, вып. 3 (375), с. 27-29. 5. Буданов В. Н. Микрополосковый балансный преобразователь частоты на варакторных диодах. Электронная техника, Сер. 1. Электроника СВЧ, 1986, вып. 6 (390), с. 13-15. 6. Буданов В. Н. Частотные характеристики преобразователей частоты на варакторных диодах. Электронная техника, сер. 1, Электроника СВЧ, 1987, вып. 10 (404), с. 21-25.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2