Способ флокуляции, осаждения, агломерации или коагуляции и устройство для его осуществления
Использование: флокирование, осаждение, агломерация или коагуляция ингредиентов, растворенных суспендированных или эмульгированных в жидкости, или микроорганизмов из этой жидкости под действием ультразвука. Сущность изобретения: жидкость, содержащую отделяемые ингредиенты, подвергают воздействию ультразвуковых волн, образующих поле стоячих волн. Обрабатываемую жидкость пропускают под прямым углом к горизонтальному направлению распространения ультразвука через одно или несколько полей стоячих ультразвуковых волн, причем частота ультразвука превышает 1/7 предельной частоты в зоне выше половины предельной частоты. 2 с. и 22 з. п. ф-лы, 8 ил.
Изобретение относится к способу и устройству флокуляции, осаждения, агломерации или коагуляции растворенных, коллоидно растворенных, суспендированных или эмульгированных в жидкости ингредиентов или микроорганизмов, и отделения из этой жидкости этих веществ или микроорганизмов, причем жидкость, содержащую подлежащие отделению ингредиенты и/или микроорганизмы, подвергают в потоке воздействию поля ультразвуковых волн, образующих поле стоячих волн, которые заставляют накапливаться отделяемые частицы в зонах узлов колебаний или в зонах пучности колебаний поля ультразвуковых волн, и собранные таким образом частицы отделяют от жидкости осаждением.
Чтобы суспендированные частицы, могущие иметь субмикроскопические размеры, можно было бы за весьма короткое время выделить из жидкости осаждением или фильтрацией, их необходимо объединить в более крупные или же присоединить к частицам большего размера. В дисперсной системе это можно осуществить снижением электростатических поверхностных зарядов частиц (дестабилизация) или же приданием энергии движения (транспортирование) для процессов коагуляции. Известен способ флокуляции суспендированных в жидкости частиц, при котором такую жидкость подвергают воздействию поля ультразвуковых волн, после чего флокированный материал отделяют от жидкости (патент США N 4055491, кл. В 01 D 35/20, 1981). Известен далее один способ (выложенное описание Великобритании N 2098498, кл. В 01 D 43/00, 1979), в соответствии с которым текущую через трубопровод или резервуар жидкость подвергают воздействию ультразвукового поля, которое распространяется поперек направления течения потока жидкости. Находящиеся в жидкости подлежащие отделению частицы должны выноситься в сторону из потока поперек направления его течения. Частицы должны перемещаться, следовательно, в ультразвуковом поле по сравнительно большому пути поперек потока, в результате чего невозможно достигнуть высокой степени отделения частиц из жидкости. После прохождения через ультразвуковое поле в обрабатываемой жидкости остается сравнительно большое количество еще не отделенных частиц. Целью изобретения является создание способа вышеназванного вида, по которому с максимально высокой эффективностью простым и сберегающим энергию путем можно обрабатывать жидкости, в частности воду, с целью очистки, а также суспензии с целью получения и регенерации сырья и микроорганизмов. Кроме того, должно быть возможным получение мелкозернистого угля из содержащих уголь суспензий также и тогда, если эти суспензии содержат включения еще других веществ. Способ вышеназванного вида согласно настоящему изобретению отличается тем, что жидкость, содержащую ингредиенты и/или микроорганизмы, направляют примерно под прямым углом к горизонтальному направлению распространения ультразвука через одно или несколько полей стоячих ультразвуковых волн, причем частота f ультразвука больше одной седьмой предельной частоты f0, при этом предпочтительна область выше половины предельной частоты f0 и для f0 имеет силу: f0 (Гц) 0,4775 н/R2, где н кинематическая вязкость жидкости, м2/с; R активный радиус частицы в случае сферических частиц равен их радиусам, а для частиц другой формы R является радиусом той сферы из аналогичного вещества, которая оказывает то же самое гидравлическое сопротивление колеблющейся жидкости. Эти приемы позволяют достичь поставленную выше цель. Быструю коагуляцию и соответственно сплочение ингредиентов жидкости удается достигнуть при небольшом расходе энергии. Предлагаемый выше выбор ультразвуковой частоты, особая комбинация направления распространения звука и направление потока оказывают очень выгодное влияние, потому что образуется поле стоячих волн, в котором плоскости, в которых собираются отделяемые частицы, проходят в направлении потока жидкости, и поэтому накапливанию частиц практически не мешает протекание потока. Накапливание этих частиц происходит непрерывно, причем частицы проделывают при этом лишь небольшие участки пути для сбора в ультразвуковом поле. Отделение частиц за счет осаждения из собранных масс частиц идет непрекращающимся процессом. В зоне плоскостей, имеющих взаимное расстояние половины ультразвуковых волн в соответствующей жидкости и проходящих перпендикулярно направлению распространения звука, образуются агломераты такой величины, что они могут легко отделяться от жидкости осаждением. Образование поля стоячих ультразвуковых волн можно обеспечивать простым путем, возбуждая пьезоэлектрические электроакустические преобразователи в резонансной частоте или в одной из нечетных гармоник озвучиваемого пространства, образующего резонатор, и поэтому в озвучиваемом пространстве создается поле стоячих ультразвуковых волн, причем в качестве резонатора следует считать пакет всех прозвучиваемых акустических слоев, включая также и те поверхности, на которых происходит отражение звуковых волн. Как известно, давление звукового излучения перемещает частицы в те места ультразвукового поля, где отклонение молекул воды является наибольшим. Если частота ультразвука превышает определенную предельную частоту f0, то частицы только минимально следуют колебаниям воды. В пучностях колебательной скорости существует поэтому максимальное относительное движение между частицами и колеблющейся водой. Молекулы воды периодически проходят плоскости пучности колебательной скорости под прямым углом с максимальной колебательной скоростью. Из-за собравшихся в плоскостях пучности колебательной скорости частиц, минимально следующих колебаниям воды, там имеется сужение проточного поперечного сечения. Скорость колеблющейся воды должна поэтому между частицами повышаться, вследствие чего при сохранении общей энергии там неизбежно происходит местное снижение давления между частицами. Это сравнительно низкое давление между частицами имеет своим следствием их взаимное притяжение, которое в способе согласно изобретению используют для проведения коагуляции частиц. При проведении способа согласно настоящему изобретению выгодно направлять жидкость через ультразвуковое поле или поля ламинарным потоком. Если через ультразвуковое поле течет суспензия, то там задерживаются и агломерируются частицы, а жидкость покидает звуковое поле очищенной. Для отбора агломератов можно предусмотреть ниже озвучиваемого пространства отстойную камеру. Благодаря горизонтальному направлению распространения звука частицы располагаются в вертикальных плоскостях, укрупняются и после этого осаждаются под действием силы тяжести. Выгодная форма выполнения способа согласно настоящему изобретению предусматривает озвучивание жидкости и поля ультразвуковых стоячих волн, образующегося между двумя параллельными и противоположно друг другу расположенными ультразвуковыми преобразователями, в горизонтальном протекании. Таким путем можно простым образом собирать ингредиенты жидкости в плоскостях в ультразвуковом поле и осуществлять простое и эффективное отделение частиц из жидкости, используя для этой цели действие силы тяжести. В соответствии с другим вариантом выполнения способа согласно настоящему изобретению предусмотрено подвергать обрабатываемую жидкость воздействию двух ультразвуковых полей, которые пространственно пересекаются друг с другом внутри озвучиваемого пространства и одновременно или же попеременно воздействуют на жидкость, причем преимущественно два плоских ультразвуковых поля, пересекающих друг друга под прямым углом и линии пересечения плоскостей узлов колебаний которых проходят параллельно направлению течения жидкости. Особенно выгодный аспект выполнения в таком виде заключается в том, что собирающиеся частицы располагаются в линии и благодаря этому концентрируются в значительно большей степени по сравнению с одновременным озвучиванием. Линии, по которым располагаются частицы, представляют собой сечение плоскостей пучности колебательной скорости обоих ультразвуковых полей. Еще одна выгодная форма выполнения способа в соответствии с настоящим изобретением отличается тем, что жидкость направляют течь в цилиндрическом ультразвуковом поле, узлы колебаний которого расположены примерно в цилиндрических и относительно друг друга коаксиальных поверхностях и через которое жидкость течет приблизительно параллельно геометрической оси поля, или последовательно озвучивают в нескольких таких полях. Мощность электрических колебаний, с какой возбуждают ультразвуковые преобразователи, выбирают выгодным образом менее 3 Вт/см2 регулируемой поверхности ультразвуковых преобразователей, причем предпочтителен интервал от 0,5 до 2 Вт/см2. Количество энергии на м3 суспензии зависит от ее плотности, а также от электростатического поверхностного заряда суспендированных частиц и его целесообразно выбирать равным от 0,05 до 10 кВт, причем предпочтителен интервал от 0,1 до 4 кВт
Формула изобретения
1. Способ флокуляции, осаждения, агломерации или коагуляции веществ, растворенных, коллоидно растворенных, суспендированных или эмульгированных в жидкости, или микроорганизмов и отделения частиц из жидкости, заключающийся в том, что на обрабатываемый поток жидкости воздействуют полем ультразвуковых стоячих волн, накапливают частицы в зонах узлов колебаний или в зонах пучности колебаний, а затем накопленные частицы отделяют от жидкости седиментацией, отличающийся тем, что обрабатывающую жидкость пропускают приблизительно под прямым углом к горизонтальному направлению распространения ультразвука через одно или несколько полей стоячих ультразвуковых волн, причем частота f ультразвука превышает одну седьмую предельной частоты f0 и частота выше половины предельной частоты f0 предпочтительна, а предельная частота составляет f0 0,4775 Н/R2 Гц, где Н кинематическая вязкость жидкости, м2/c, R активный радиус частицы, м. 2. Способ по п.1, отличающийся тем, что жидкость направляют через одно или несколько ультразвуковых полей ламинарным потоком. 3. Способ по п.1 или 2, отличающийся тем, что жидкость обрабатывают в горизонтальном потоке в поле ультразвуковых стоячих волн, создаваемом между двумя параллельными друг другу и противоположно расположенными ультразвуковыми преобразователями. 4. Способ по п.1 или 2, отличающийся тем, что на жидкость одновременно или попеременно воздействуют двумя ультразвуковыми полями, пересекающими друг друга внутри озвучиваемого пространства, причем воздействуют двумя плоскопараллельными ультразвуковыми полями, пересекающими друг друга под прямым углом, при этом линии сечения плоскостей узлов колебаний проходят параллельно направлению потока жидкости. 5. Способ по п.1 или 2, отличающийся тем, что жидкость обрабатывают в одном цилиндрическом ультразвуковом поле с узлами колебаний, расположенными приблизительно в цилиндрических и коаксиальных одна другой поверхностях, причем жидкость направляют через поле примерно параллельно его геометрической оси или обрабатывают последовательно в нескольких таких полях. 6. Способ по пп. 1 5, отличающийся тем, что к ультразвуковым преобразователям подводят электрическое колебание с мощностью менее 3 Вт/см2 поверхности преобразователя, при этом предпочтителен интервал между 0,5 2 Вт/см2. 7. Способ по пп. 1 6, отличающийся тем, что к обрабатываемой жидкости подводят ультразвуковую энергию между 0,05 и 10 кВт/ч/м3, причем предпочтителен интервал между 0,1 и 4 кВт/ч/м3. 8. Способ по пп. 1 7, отличающийся тем, что для обработки содержащей минеральные вещества суспензии применяют частоты ультразвука между f0/3 и 10f0, причем предпочтителен интервал между f0 и 4f0. 9. Способ по пп. 1 7, отличающийся тем, что для обработки жидкостей с ингредиентами, плотность которых приблизительно соответствует плотности жидкости, применяют частоты ультразвука в интервале между 2f0 и 15 f0, причем предпочтителен интервал между 3f0 и 5f0. 10. Способ по пп. 1 7, отличающийся тем, что для коагуляции частиц угля, находящихся в воде, применяют частоты ультразвуков в интервале между f0/2 и 10f0, причем предпочтителен интервал между f0 и 4f0. 11. Способ по пп. 1 7, отличающийся тем, что для коагуляции ингредиентов с плотностью, существенно отличающейся от плотности жидкости, в частности для коагуляции суспендированной металлической пыли, применяют частоты ультразвуков в интервале между f0/7 и f0/10, причем предпочтителен интервал между f0/6 и f0/2. 12. Способ по пп. 1 11, отличающийся тем, что ультразвуковую частоту в процессе обработки жидкости ступенчато изменяют преимущественно в сторону снижения. 13. Способ по пп. 1 12, отличающийся тем, что обработку жидкости проводят периодически. 14. Способ по пп. 1 13, отличающийся тем, что обработку жидкости проводят ультразвуком с модулированной амплитудой, причем степень модуляции выбирают преимущественно более чем 70% модуляции. 15. Способ по п.14, отличающийся тем, что применяют ультразвук, амплитуду которого модулируют частотой менее 20 кГц. 16. Способ по пп. 1 15, отличающийся тем, что к жидкости перед ее обработкой добавляют порошкообразное адсорбционное средство, преимущественно активированный уголь. 17. Способ по пп. 1 16, отличающийся тем, что к жидкости перед ее обработкой дозированно добавляют коагулирующий агент или коагулирующие агенты. 18. Устройство для флокуляции, осаждения, агломерации или коагуляции, содержащее камеру для обработки жидкости с расположенными на стенке ультразвуковыми преобразователями и снабженную одной или несколькими отстойными камерами с элементами для выпуска осевших частиц, расположенными в их самом глубоком месте, отличающееся тем, что один или несколько ультразвуковых преобразователей установлены на одной или в одной параллельной горизонтальному направлению потока жидкости боковой стенке, а противоположная, параллельная направлению течения жидкости боковая стенка снабжена звукоотражателями и в донной части устройства расположена одна или преимущественно несколько воронкообразных отстойных камер с ограниченными сверху гидравлическими блендами. 19. Устройство по п.18, отличающееся тем, что камера выполнена в виде проточного прямоугольной формы резервуара с встроенными и установленными под прямым углом друг к другу плоскими стенками, несущими ультразвуковые преобразователи, причем стенки расположены параллельно боковым поверхностям резервуара и разделяют на две или несколько секций. 20. Устройство по п.18, отличающееся тем, что камера выполнена в виде прямого цилиндра преимущественно из звуконепроницаемого материала с коаксиально расположенным цилиндрическим ультразвуковым преобразователем для радиальных колебаний. 21. Устройство по п.20, отличающееся тем, что цилиндрический ультразвуковой преобразователь выполнен в виде трубы и расположен внутри потока жидкости, причем жидкость течет вдоль внутренней и наружной стенок ультразвукового преобразователя. 22. Устройство по п.18, отличающееся тем, что камера снабжена отделителем с параллельными пластинами, расположенными между и параллельно ультразвуковым преобразователям, причем толщина пластин соответствует преимущественно нечетному числу, кратному четверти длины волны ультразвука в этих отделительных пластинах. 23. Устройство по пп. 18 22, отличающееся тем, что ультразвуковые преобразователи выполнены из пьезоэлектрических синтетических материалов, преимущественно из поливинилиденфторида. 24. Устройство по п. 23, отличающееся тем, что ультразвуковые преобразователи выполнены из слоев поляризуемых веществ, нанесенных в виде порошковых покрытий на несущие пластины.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8