Способ повышения долговечности изделий
Изобретение относится к технологической обработке, а более конкретно к термомеханической, и может быть использовано для повышения долговечности любых изделий из металлов или сплавов (даже материалов). Наиболее близким к предлагаемому изобретению является способ, включающий создание напряжений, противоположных по знаку эксплуатационным, путем приложения нагрузки заданной величины (см. Э.Гудремон "Специальные стали", т.1, 1959 г., стр.351). Недостатком указанного способа является отсутствие универсального подхода для определения величины прикладываемой к изделию нагрузки. Указанная цель достигается тем, что в технологический процесс вводится понятие коэффициента потерь энергии (т. е. учет его величины) в процессе преобразования прикладываемой к пластине нагрузки в стабилизированные внутренние напряжения, в деформацию изделия либо в изменение структуры материала. Предлагается силовую (механическую, магнитную, электростатическую) и/или не силовую (химическую, электрическую, акустическую, рентгеновскую, радиоактивную) нагрузку прикладывать величиной больше рабочей в соответствии с формулой , где Rприкл - прикладываемая нагрузка,
- коэффициент потерь прикладываемой энергии; Rэ - эксплуатационная или заданная нагрузка. 4 з.п. ф-лы.
Изобретение относится к термообработке, а более конкретно к термомеханической обработке, и может быть использовано для повышения работоспособности любых изделий из металлов или сплавов (далее материалов).
Известен способ термомеханической обработки для получения высокопрочных материалов и, следовательно, для повышения работоспособности изделий из них (см. а.с. N 212309, С 21D 8/00, 1968). Наиболее близким техническим решением к изобретению является способ, включающий создание напряжений, противоположных по знаку эксплуатационным, путем приложения нагрузки заданной величины (Э.Гудремон "Специальные стали", т.1, 1959, стр.35). Согласно настоящему изобретению предлагается "приспособить" материал изделия к наиболее тяжелым условиям и особенностям его дальнейшей эксплуатации. Для осуществления такой приспособляемости программно изменяют структуру материала, повышают его прочность и пластичность, а также дополнительно к этому аккумулируют в новой структуре запас энергии в виде размещенных внутренних стабилизированных напряжений для наиболее эффективного противодействия тому спектру статических, динамических силовых (например, механических, магнитных, электростатических) и не силовых эксплуатационных воздействий (например, химических, электрических, акустических, рентгеновских и других видов излучений), которые оказывают наибольшее большее влияние на повышение и длительность работоспособности изделия, путем изменения, например, структуры его материала. Практически указанная цель достигается тем, что исходную изотропную структуру материала изделия, находящуюся без внутренних для хаотично направленных напряжений, преобразовывают в анизотропную предварительно напряженную структуру с программно размещенными ориентированными и стабилизированными как структурой с ее особенностями (размером, формой, направлением зерен), так и внутренними напряжениями, которые по месту приложения, форме, величине скорости их изменения и иных показателей (конструкции изделия, его геометрии, размеров) должны быть полной и/или частичной имитацией тех наиболее опасных эксплуатационных напряжений и/или других изменений, которые будут возникать при последующей работе конкретного изделия, его транспортировке и хранении. Осуществляется это тем, что исходную изотропную структуру изделия подвергают согласно выбранной или разработанной термо или термомеханической обработке для конкретного материала нагреванию с программным влиянием на его объем статических, динамических сил и/или других не силовых воздействий, которым будет нагружаться изделие в последующей эксплуатации. Эти воздействия также должны полностью или частично имитировать подобные наиболее опасные эксплуатационные силы и другие не силовые воздействия с последующей их стабилизацией или изменением по заданной программе. В конце таких технологических операций в отличие от известных программно созданные в материале внутренние напряжения не снимают, так как конкретную конструкцию изделия, изготовленную из конкретного материала, "приспосабливают" для работы в условиях конкретной эксплуатации. Однако в зависимости от особых требований к изделиям иногда целесообразен отпуск. Согласно предлагаемому способу можно осуществить поставленную цель и, следовательно, в разной степени повысить работоспособность изделий в течение как полного технологического цикла, состоящего из двух и более стадий (нагревания, охлаждения, отпуска, химического воздействия и т.д.), так и его части (например, охлаждения или охлаждения с последующими процессами). На стадии нагревания с одновременным влиянием на исходный изотропный материал статическими и/или динамическими силовыми и/или другими видами воздействий изменяется его структура разрез, форма, ориентация зерен в пространстве и другие показатели в соответствии с величиной, направлением и особенностью указанных воздействий, т.е. образуется анизотропная программно расположенная структура. Помимо этой новой структуры происходит в материале аккумуляция энергии, т. е. создаются еще внутренние напряжения, которые по величине и характеру изменения соответствуют при отсутствии у изделия кассеты величине прочностных показателей материала во время его нагрева. Анизотропная предварительно напряженная структура, созданная в соответствии с величиной и характером наиболее опасных эксплуатационных воздействий, должна быть застабилизирована на стадии охлаждения (закалки) до завершения термообработки. На стадии охлаждения (закалки) с целью дальнейшего увеличения уровня аккумулированной энергии в виде внутренних напряжений, созданных на стадии нагревания, т.е. на базе новой анизотропной структуры, силовые и другие воздействия продолжаются до конца термообработки с величиной, также соответствующей при отсутствии у изделия кассеты прочностным показателям материала во время его охлаждения до конца термообработки. На остальных стадиях термообработки для дальнейшего повышения уровня стабилизации анизотропной предварительной напряженной структуры силовые и другие воздействия продолжаются с величиной прочностных показателей материала на этих стадиях. На всех указанных стадиях возможно превышение величин воздействий на материал до получения пластической деформации, например, 1% Возможно также создание комбинированных анизотропных и/или изотропных показателей. Таким образом, на стадии нагревания с силовыми и другими воздействиями создают в основном анизотропную структуру и первый этап внутренних напряжений, а на второй стадии (стадии охлаждения) создают уже в новой анизотропной структуре основную величину анизотропных внутренних напряжений. Возможно упрочнение материала без первого этапа, т.е. на стадии охлаждения и других остальных, однако достигнутый при этом уровень прочностных воздействий будет существенно ниже. Особенность достижения высокой работоспособности изделия по предлагаемому способу состоит в создании в объеме его материала двойного противодействия внешним силовым воздействиям: во-первых, противодействия благодаря созданию в изделии предварительных внутренних напряжений, направленных в процессе работы изделия противоположно внешним воздействиям, удельная величина которых




























Формула изобретения
1. Способ повышения долговечности изделий, включающий создание напряжений, противоположных по знаку, эксплуатационным путем приложения нагрузки заданной величины, отличающийся тем, что нагрузку прикладывают величиной больше рабочей в соответствии с формулой

Rэ эксплуатационная или заданная нагрузка. 2. Способ по п.1, отличающийся тем, что нагрузку прокладывают в процессе термомеханической обработки. 3. Способ по п.1, отличающийся тем, что нагрузку прикладывают в процессе термической обработки. 4. Способ по п.1, отличающийся тем, что прикладывают механическую, магнитную или электростатическую нагрузку. 5. Способ по п.1, отличающийся тем, что нагрузку прикладывают путем воздействия химических, электрических, акустических, рентгеновских или других видов излучения.