Электрогидравлический привод
Использование: в системах нагружения испытательных стендов и в системах управления самолетов, подъемно-транспортных и других машин. Сущность изобретения: обмотка управления электромеханического преобразователя электрогидравлического усилителя мощности подключена к выходу электронного блока управления, один выход к-рого соединен с выходом задатчика управляющего сигнала. Каждая рабочая полость дифференциального гидроцилиндра соединена с источником питания постоянного давления и сливом через индивидуальный электрогидравлический усилитель мощности, обмотки управления преобразователей к-рых подключены к разным выходам электронного блока управления. Отношение электрических сигналов на выходах электронного блока управления равно отношению эффективных площадей поршня гидроцилиндра со стороны его соответствующих рабочих полостей, возведенному в степень с показателем, определяемым для обоих возможных направлений движения выходного звена гидроцилиндра исходя из заданной системы неравенств. 1 ил.
Изобретение относится к области объемного гидропривода, а именно к электрогидравлическим приводам с дроссельным управлением и дифференциальными гидроцилиндрами, и может быть использовано, например, в системах нагружения испытательных стендов и в системах управления самолетов, подъемно-транспортных и других машин.
Известен электрогидравлический привод, содержащий источник питания постоянного давления, дифференциальный гидроцилиндр и электрогидравлический усилитель мощности, обмотка управления электромеханического преобразователя которого подключена к выходу электронного блока управления, один из входов которого соединен с выходом задатчика управляющего сигнала (1). В данном электрогидравлическом приводе одна из рабочих полостей дифференциального гидроцилиндра соединена с источником питания постоянного давления и сливом через электрогидравлический усилитель мощности, а другая рабочая полость гидроцилиндра непосредственно соединена со сливом, вследствие чего на выходном звене гидроцилиндра возможно создание усилий только одного знака (направления), что ограничивает область применения известного привода и является его техническим недостатком. Наиболее близким по технической сущности к заявляемому объекту является принятый в качестве прототипа электрогидравлический привод, содержащий источник питания постоянного давления, дифференциальный гидроцилиндр и электрогидравлический усилитель мощности, обмотка управления электромеханического преобразователя которого подключена к выходу электронного блока управления, один из входов которого соединен с выходом задатчика управляющего сигнала (2). Если потери давления на рабочем окне выходного каскада электрогидравлического усилителя мощности, сообщающем со сливом рабочую полость гидроцилиндра, со стороны которой эффективная площадь поршня имеет меньшее значение, в силу соответствующей величины попутной (совпадающей по направлению со скоростью движения выходного звена гидроцилиндра) нагрузки близки к значению давления питания электрогидравлического привода, то в другой рабочей полости гидроцилиндра, которая при этом сообщается с выходом источника питания, и, таким образом, является напорной, давление снижается до упругости насыщенного пара рабочей жидкости и начинается кавитация, что отрицательно сказывается на характеристиках работы привода в целом, т.е. является его техническим недостатком. Параметры гидропривода с дроссельным управлением выбирают, в первую очередь, исходя из условия обеспечения требуемого закона движения объекта управления, или, говоря другими словами, из условия совместимости диаграммы нагрузки, представляющей собой связь потребных усилия на выходном звене гидродвигателя и скорости его движения, и механической характеристики гидропривода, представляющей собой зависимость скорости движения выходного звена гидродвигателя, которую может обеспечить привод, от нагружения на этом звене. Суть указанного условия состоит в том, что диаграмма нагрузки всеми своими точками должна располагаться внутри области скоростей и усилий на выходном звене гидродвигателя, обеспечиваемых согласно механической характеристике гидропривода, то есть при любом допустимом значении нагрузки должна обеспечиваться скорость движения выходного звена гидродвигателя, не меньшая той, что требуется по диаграмме нагрузки. Для исключения кавитационных явлений при работе с попутной нагрузкой на выходном звене рассматриваемого электрогидравлического привода с дроссельным управлением и дифференциальным гидроцилиндром приходится завышать давление питания привода по сравнению со значением, необходимым при прочих равных условиях из условия обеспечения требуемого закона движения объекта управления. Завышение величины давления питания известного электрогидравлического привода приводит к повышенным потерям энергии при его эксплуатации, что также является его техническим недостатком. Технической задачей данного изобретения является создание электрогидравлического привода с дроссельным управлением и дифференциальным гидроцилиндром, обладающего пониженными потерями энергии и повышенными динамической жесткостью и частотой собственных колебаний и исключающего кавитационные явления в полостях гидроцилиндра при нагружении выходного звена последнего попутным усилием. Сущность изобретения заключается в том, что в электрогидравлическом приводе, содержащем источник питания постоянного давления, дифференциальный гидроцилиндр и электрогидравлический усилитель мощности, обмотка управления электромеханического преобразователя которого подключена к выходу электронного блока управления, один из входов которого соединен с выходом задатчика управляющего сигнала, каждая из рабочих полостей дифференциального гидроцилиндра соединена с источником питания и сливом через индивидуальный электрогидравлический усилитель мощности, обмотки управления электромеханических преобразователей которых подключены к разным выходам электронного блока управления, причем отношение электрических сигналов на упомянутых выходах электронного блока управления равно отношению эффективных площадей поршня дифференциального гидроцилиндра со стороны его соответствующих рабочих полостей, возведенному в степень с показателем R, определяемым для обоих возможных направлений движения выходного звена гидроцилиндра из системы неравенств:



где Aнп, Aсп эффективные площади поршня дифференциального гидроцилиндра 1 соответственно со стороны его напорной и сливной полостей;
fнп, fсп коэффициенты пропорциональности переменных составляющих силы трения в подвижных парах гидроцилиндра 1 значениям давления рабочей жидкости соответственно в напорной и сливной полостях гидроцилиндра;

Pсл давление слива;
Pп давление рабочей жидкости, создаваемое источником питания постоянного давления 4;
Rпоп max максимально возможное значение попутной нагрузки на выходном звене гидроцилиндра 1 при рассматриваемом направлении движения выходного звена;
Pдоп min, Рдоп max соответственно минимальное и максимальное допустимые значения давления в рабочих полостях гидроцилиндра 1. Выходным звеном дифференциального гидроцилиндра 1 в зависимости от способа его установки может быть шток или корпус гидроцилиндра. Один из выходов электронного блока управления 7 соединен с выходом задатчика 8 управляющего сигнала. В зависимости от значения и области применения электрогидравлического привода другие входы электронного блока 7 могут быть соединены через устройства обратной связи с датчиками контролируемых параметров (на чертеже устройства обратной связи и датчики контролируемых параметров не показаны). Электронный блок управления 7 предназначен для формирования (на основании поступающих на его входы сигналов от задатчика 8 и устройств обратной связи) усиленных электрических сигналов для управления электрогидравлическими усилителями мощности 5 и 6. Электрогидравлический привод работает следующим образом. При поступлении на соответствующий вход электронного блока 7 управляющего сигнала с выхода задатчика 8 на выходах блока 7, к которым подключены обмотки управления электромеханических преобразователей электрогидравлических усилителей мощности 5 и 6 (на чертеже электромеханические преобразователи не показаны), формируются усиленные электрические сигналы, которые отличаются в (А2/А3)R раз, где А2, А3 эффективные площади поршня дифференциального гидроцилиндра 1 соответственно со стороны его рабочих полостей 2 и 3. На нарушая общности рассуждений, для определенности положили, что в рассматриваемом случае рабочая полость 2 дифференциального гидроцилиндра 1 посредством усилителя 5 сообщается с источником питания постоянного давления 4, то есть является напорной, а полость 9 гидроцилиндра 1 посредством усилителя 6 сообщается со сливом, то есть является сливной. При этом A2


Gнп (Aнп/Aсп)RGмп (3)
При квадратичном законе сопротивления, который в подавляющем большинстве случаев имеет место при течении жидкости через рабочее окно, открываемое дросселирующим золотником:


где Qнп,

Qсп,

Qсп=AспQнп/Aнп (6)
При пренебрежении потерями давления на остальных участках привода по сравнению с потерями давления


Pнп=Pп-

Pсл=Pсл+

Сила трения в подвижных парах гидроцилиндра может быть представлена в виде суммы составляющих: постоянной

fнпPнп+fспPсп
(fнп<A; fсп<A)
Тогда уравнение сил, действующих на выходное звено гидроцилиндра 1, имеет вид:
(Aнп-fнп)Pнп=(Aсп+fсп)Pсп+

где R усилие на выходном звене гидроцилиндра. На основании выражений (3)-(9) получаем соотношения:


Для того, чтобы при выбранном исходя из условия обеспечения требуемого закона движения объекта управления, значении Pп давления питания привода при работе последнего с попутной нагрузкой на выходном звене Rпоп дифференциального гидроцилиндра давление в напорной полости гидроцилиндра не уменьшалось ниже величины Pдоп min, а сливной полости гидроцилиндра не повышалась сверх величины Pдоп max, согласно выражениям (10) и (11) должны выполняться неравенства:


Но поскольку неравенства (12) и (13) полностью совпадают с неравенствами (1) и (2), на основании которых для обоих возможных направлений движения выходного звена дифференциального гидроцилиндра 1 приводился выбор значения показателя степени R то для рассматриваемого электрогидравлического привода они заведомо выполняются. Отметим, что для случая:


(Aнп/Aсп)2Pп и [(Aнп/Aсп)3-Aнп/Aсп+1)-1Pп
вычисленных для обоих возможных направлений движения выходного звена гидроцилиндра. При отношении большей из эффективных площадей поршня дифференциального гидроцилиндра к меньшей, равном, например, 1,25, имеем P*

Формула изобретения

где Aн.п и Aс.п эффективные площади поршня дифференциального гидроцилиндра соответственно со стороны его напорной и сливной полостей;
fн.п и fc.п коэффициенты пропорциональности переменных составляющих силы трения в подвижных парах гидроцилиндра значениям давления рабочей жидкости соответственно в напорной и сливной полостях гидроцилиндра;

Pсл давление слива;
Pп давление рабочей жидкости, создаваемое источником питания постоянного давления;
Rпоп.max максимальное возможное значение попутной нагрузки на выходном звене гидроцилиндра;
Pдоп.min и Pдоп.max соответственно минимальное и максимальное допустимые значения давления в рабочих полостях гидроцилиндра.
РИСУНКИ
Рисунок 1