Первая стенка термоядерного реактора
Использование: ядерная техника, а более конкретно, конструкция первой стенки термоядерного реактора. Сущность изобретения: в первой стенке термоядерного реактора охлаждающая панель выполнена из двух установленных с зазором параллельных пластин, соединенных герметично по периметру между собой. При этом в пластине охлаждающей панели, непосредственно контактирующей с теплопроводящей прокладкой, выполнены продольные каналы и поперечные отверстия, через которые каналы сообщены с полостью, образованной пластинами и соединяющими их элементами. Обращенная в сторону зазора поверхность этой пластины покрыта металлическим слоем с капиллярной структурой. Каналы соединены с системой циркуляции теплоносителя. Система циркуляции включает в себя контур нагрева, образованный последовательно установленными парогенератором и циркуляционным насосом, и контур охлаждения, состоящий из последовательно расположенных теплообменника, конденсатора и питательного насоса. Каналы на входе соединены с циркуляционным и питательным насосами, а на выходе - с теплообменником, который также сообщен с пространством в верхней части полости через конденсатор. Теплопроводящая прокладка выполнена из легкоплавкого сплава. Достигаемый технический результат заключается в повышении надежности теплоотвода в режиме длительных переменных тепловых нагрузок, стабилизации температуры конструкции по всему сечению независимо от тепловой нагрузки, что снижает деформационные напряжения во время эксплуатации, снижении давления теплоносителя в контуре охлаждения до 1,5-2 МПа, а также упрощении и удешевлении технологических процессов, сокращении времени монтажно-демонтажных работ по замене экранов. 2 з.п. ф-лы, 2 ил.
Изобретение относится к ядерной технике, а более конкретно к конструкции первой стенки термоядерного реактора.
Известна конструкция первой стенки термоядерного реактора ИТЕР [1] основными элементами которой являются защитные экраны из графитового композита УУКМ, охлаждающая панель, теплопроводящая прокладка между ними и узлы стыковки охлаждающей панели с магистральными трубопроводами. Охлаждающая панель, изготовленная из бронзы, выполнена с каналами для прохождения теплоносителя. В качестве теплопроводящей прокладки используют сплав меди, предназначенный для обеспечения теплового контакта и крепления защитных экранов к охлаждающей панели. Недостатки данной конструкции заключаются в следующем: 1) выполнение защитных экранов из графитового материала ведет к неравномерному охлаждению защитных экранов, в результате чего поверхности удаленные от охлаждающей панели перегреваются, что приводит к их повышенному эрозионному наносу; 2) эрозионный нанос защитного экрана во время работы реактора приводит к загрязнению плазменной камеры и срыву плазмы; 3) в связи с необходимостью предотвращать кипение теплоносителя в каналах охлаждающей панели повышают давление в контуре (


4) требуется сложная система регулирования расхода теплоносителя для поддержания постоянной температуры конструкции первой стенки;
5) пайка графитового экрана с подложкой из бронзы приводит к появлению температурных напряжений в графитовом экране за счет разности температурных расширений материалов;
6) пайка графитовых экранов к бронзовой охлаждающей панели требует сложной подготовки поверхности графита к пайке нанесение промежуточных слоев, что усложняет и удорожает технологию;
7) защитные экраны соединены с охлаждающей панелью пайкой твердым припоем, это приводит к появлению дополнительных температурных напряжений между экраном и охлаждающей панелью при нагревании конструкции, что приводит куменьшению долговечности конструкции;
8) сложность монтажно/демонтажных работ по замене графитовых защитных экранов (дистанционная пайка в условиях вакуумного корпуса). Вышеперечисленные недостатки приводят к снижени надежности и сокращению срока эксплуатации. Техническим результатом данного изобретения является:
1. Надежный теплоотвод в режиме длительных переменных тепловых нагрузок (до 3-х раз от номинальной тепловой нагрузки). 2. Стабильность температуры конструкции по всему сечению независимо от тепловой нагрузки, что снижает деформационные напряжения во время эксплуатации. 3. Снижение давления теплоносителя в контуре охлаждения до 2-1,5 МПа. 4. Упрощение и удешевление технологических процессов, сокращение времени монтажно-демонтажных работ по замене экранов. Указанный технический результат достигается за счет того, что в первой стенке термодяерного реактора, содержащем защитные экраны, охладающую панель, теплопрорводящую прокладку между ними и систему циркуляции теплоносителя, соединенную с охлаждающшей панелью, охлаждающая панель представляет собой две параллельные пластины, соединенные герметично по периметру между собой, в пластине охлаждающей панели, непосредственно контактирующей с теплопроводящей прокладкой, выполнены продольные каналы и поперечные отверстия, через которые каналы сообщены с полостью, образованной пластинами и соединяющими их элементами, при этом на поверхности пластины, обращенной в сторону полости, расположен металлический слой с капиллярной структурой, а каналы соединены с системой циркуляции, кроме того, система циркуляции теплоносителя включает в себя контур нагрева, образованный последовательно установленными парогенератором и циркуляционным насосом, и контур охлаждения, состоящий из последовательно расположенных теплообменника, конденсатора и питательного насосоа, при этом каналы на входе соединены с циркуляционным и питательным насосоами, а на выходе с теплообменником, который сообщен с верхней частью полости через конденсатор, кроме того, теплопроводящая прокладка выполнена из легкоплавкого сплава. Вышеуказанная совокупность известных и отличительных признаков позволяет создать конструкцию первой стенки термоядерного ядерного, обеспечивающую надежный режим работы в условиях длительных циклических нагрузок (увеличение тепловой нагрузки до 3-х раз). На фиг. 1 изображен участок первой стенки со стороны плазмы; на фиг.2 показано поперечное сечение А-А участка первой стенки фиг.1. Первая стенка термоядерного реактора содержит защитные экраны 1, выполненные из тугоплавкого металла, например, из бериллия и закрепленные посредством цапф 2 на охлаждающей панели 2. Между защитными экранами 1 и охлаждающей панелью 3 имеется теплопроводящая прокладка 4, изготовленная из легкоплавкого сплава, например, из алюминиевого сплава. Охлаждающая панель 3 представляет собой две параллельные пластины 5 и 6, установленные с зазором, которые герметично по периметру соединены между собой элементами 7, образующими полость 8. Пластина 5, непосредственно контактирующая с теплопроводящей прокладкой 4, выполнена с продольными каналами 9 для прохождения теплоносителя и поперечными отверстиями 10, через которые каналы 9 сообщены с полостью 8. на поверхности ластины 5, обращенной в сторону полости 8, расположен металлический слой скапиллярной структурой, например, в виде металлического фитиля 11. На входе и выходе каналы 9 через коллектора 12 соединены с системой циркуляции теплоносителя, которая включатет в себя контур нагрева, который образован последовательно установленными парогенератором 13 и циркуляционным насосом 14, и контур охлаждения, состоящий из последовательно расположенных теплообменника 15, конденсатора 16 и питательного насоса 17. Полость 8 служит для сбора пара или теплоносителя, проникающего из каналов 9 через отверстия 10, а в пластине 6 имеются отводные патрубки 18, 19 в верхней части для пара, и в нижней для конденсата, которые связаны с системой циркуляции теплоносителя. Каналы 9 на входе через коллектор 12 соединены с циркуляционным 14 и питательным насосом 17, а на выхорде с теплообменником 15, который сообщен с верхней частью полости 8 через конденсатор 18, так как на входе конденсатор 16 соединен с верхней частью полости 8. Нижняя часть полости 8 через патрубок 19 соединена с входом питательного насоса 17. Теплопроводящая прокладка 4, между защитным экраном 1 и охлаждающей панелью 3 служит для компенсации технологических зазоров, обеспечения надежного теплового контакта экранов 1 с охлаждающей пластиной 5 панели 3, для компенсации температурных расширений экрана 1 и, охлаждающей панели 3. Предложенная конструкция первой стенки термоядерного реактора функционирует следующим образом. Перед началом работы термоядерного реактора включают контур подогрева первой стенки. От парогенератора 13 циркуляционными насосами 14 пар подаетс яна распределительный коллектор 12, а затем в каналы 9. Пар проходя по каналам 9, нагревают первую стенку до температуры




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2