Способ получения этилена
Способ получения этилена высокой чистоты, пригодного для полимеризации, включает окислительную димеризацию, очистку полученного димеризата от диоксида углерода и воды, удаление фракции углеводородов С3 и выше. Перед дематанизацией из продуктового потока отделяют примесную фракцию, содержащую монооксид углерода, водород, остаточный кислород, инертные газы и метан в количестве 1-50%. Товарный этилен выделяют из фракции С2, подвергнутой абсорбционной очистке от ацетилена.
Этан рециклизуют на пиролиз, газообразный продукт пиролиза соединяют с основным продуктовым потоком окислительной димеризации, освобожденным от диоксида углерода. Примесную фракцию направляют в топки печей пиролиза и окислительной димеризации. 1 з.п. ф-лы, 1 ил.
Изобретение относится к области нефтехимического синтеза и, более конкретно, к способу получения этилена, пригодного для полимеризации. Известен способ получения этилена окислительной димеризацией метана под действием кислорода в присутствии катализатора, с последующей очисткой полученного димеризата от диоксида углерода и воды, отделение остаточного метана в деметанизаторе и этан в деэтанизаторе (A.K. Lee, A.M. Aitani, Fuel Seience and Technology Inter, 1991, 9 (2), р. 151-155) [1] Остаточный метан смешивают с потоком этана, отбираемого в виде кубовой фракции, и направляют в голову процесса (на стадию окислительной димеризации). Данный способ достаточно прост и удобен, однако не предусматривает очистку этилена от технологических примесей, помимо диоксида углерода и воды, метана и этана, что не позволяет получить целевой продукт высокой чистоты и делает его непригодным для полимеризации. В способ совместного получения этилена и др. низших олефинов из природного газа согласно французскому патенту N 2641531, кл. С 07С 11/04, 1989 [2] включены стадии разделения сырья на метановую фракцию и фракцию, содержащую углеводороды С2 и выше. Метан направляют на димеризацию, а из второй фракции выделяют этан, который смешивают с потоком димеризата. Полученную смесь направляют в пиролизер, а на выходе из него в пиролизат добавляют фракцию кубового остатка, полученного в результате разделения второй фракции на этан и углеводороды С3 и выше. Таким образом, кубовый остаток представляет собой смесь углеводородов С3 и выше. Смесь пиролизата и фракции углеводородов С3 и выше подвергают пиролизу для получения углеводородов с повышенным содержанием непредельных. Этот способ также не предусматривает получение этилена высокой чистоты и выделение его из такой смеси представляет определенные трудности, связанные со значительными потерями продукта и высокими энергозатратами. Известен способ получения этилена окислительной димеризацией метана в присутствии катализатора (Chem. Eng. Technol. 1987, р. 297-305) [3] В качестве примесей димеризат содержит этан, непрореагировавший метан и небольшое количество углеводородов С3 и выше, а также ацетилен, неорганические примеси моно- и диоксид углерода, водород, остаточный кислород и сопутствующие ему инертные газы. Из реактора димеризат направляют на очистку от диоксида углерода и воды. Далее продуктовый поток смешивают с газообразными продуктами пиролиза этана и подают в колонну разделения на основной поток и фракцию углеводородов С3 и выше. Дистиллят этой колонны подвергают гидрированию, а из гидрогенизата выделяют фракцию углеводородов С2, из которой в следующем блоке получают товарный этилен, этан, направляемый на пиролиз, и фракцию, содержащую все остальные компоненты: возвратный метан, водород, кислород, монооксид углерода и инертные газы. В следующем, т.н. "холодном" блоке эту фракцию разделяют на метан, возвращаемый в голову процесса, водород, оксид углерода, а также инертные газы. Разделение последних проводят на установке, представляющей собой целый комплекс ректификационных колонн, абсорберов и холодильных циклов. При этом для разделения водорода и инертных требуются сверхнизкие температуры (-196oС). Анализ технологической схемы процесса, описанного в [3] показывает, что при использовании ректификационных колонн, оправданных с экономической и технической точек зрения, в этилене, получаемом этим способом, остаточное содержание метана составляет
H2 5,87
O2 1,94
N2 14,77
CH4 51,28
CO 25,87
C2H2 0,01
C2H4 0,19
C2H6 0,03
Теплотворная способность примесной фракции 4386 ккал/нм3. Потери углеводородов С2 c примесной фракцией составляют 46 кг/час. После выделения рециклового метана и разделения этан-этиленовой фракции, товарный этилен имеет следующий состав (% об.)
C2H4 99,96
CH4 0,025
CO 0,0001
N2 0,0001
O2 0,00017
C2H6 0,015
который соответствует этилену для полимеризации. Пример 2 (сравнительный). Исходные данные, количество и состав потока, идущего в колонну выделения примесной фракции, аналогичны примеру 1. Ректификационная колонна, где происходит основное разделение, имеет 20 теоретических тарелок. При флегмовом числе 0,8, давлении 3,6 МПа, температуре верха колонны 157,1oС и куба колонны 87,3oС происходит выделение примесной фракции в количестве 12,8 т/час следующего состава (% масс):
H2 16,91
O2 3,88
N2 27,27
CH4 4,95
CO 56,86
C2H2 0,01
C2H4 0,11
C2H6 0,02
Теплотворная способность примесной фракции 2150 ккал/нм3
Потери углеводородов С2 с примесной фракцией составляют 13 кг/час. После выделения рециклового метана и разделения этан-этиленовой фракции, товарный этилен имеет следующий состав (% об.)
C2H4 99,76
N2 0,0013
CH4 0,234
O2 0,0003
CO 0,0037
C2H6 0,015
Этилен такого состава не пригоден для полимеризации: понижено содержание основного вещества и превышено допустимое содержание предельных углеводородов (метана), оксида углерода и кислорода. Пример 3 (сравнительный). Исходные данные, количество и состав потока, идущего в колонну выделения примесной фракции, аналогичны примеру 1. Ректификационная колонна, где происходит основное разделение имеет 20 теоретических тарелок. При флегмовом числе 0,8, давлении 3,6 МПа, температуре верха колонны 110,7oС и куба колонны 79,3oС выделяют примесную фракцию в количестве 64,11 т/час следующего состава (% масс):
H2 3,21
O2 1,36
N2 10,75
CH4 61,57
CO 22,00
C2H2 0,01
C2H4 0,20
C2H6 0,91
Теплотворная способность примесной фракции 5283 ккал/м3
Потери углеводородов С2 с примесной фракцией составляют 711 кг/час. После выделения рециклового метана и разделения этан-этиленовой фракции, товарный этилен имеет следующий состав (% об.):
C2H4 99,965
CH4 0,017
CO 0,0001
N2 0,0001
O2 0,00013
C2H6 0,017
Из данного примера следует, что хотя этилен соответствует требованиям, предъявляемым к нему, потери углеводородов С2 недопустимо велики. Одновременно с основной задачей получение этилена полимеризационной степени чистоты изобретение решает несколько дополнительных. В частности, примесная фракция используется в качестве топлива в печах пиролиза рециклового этана, печах подогрева метана и кислорода, в печах подогрева метана для регенерации осушителей и др. Она обладает достаточно высокой теплотворной способностью, а количество ее может обеспечить полную потребность производства в необходимом топливе. Кроме того, решается экологическая задача исключение вредных выбросов в атмосферу (например оксида углерода). Оксид углерода главным образом концентрируется в примесной фракции, а при попадании в топку печи сгорает до диоксида углерода, который не является токсичным. Пониженная теплотворная способность примесной фракции приводит к более низкому содержанию оксидов азота в продуктах ее сгорания. Способ, в соответствии с настоящим изобретением, применим без существенных капиталовложений на всех производствах, связанных с получением этилена окислительной димеризацией метана. Для его использования потребуется некоторый перемонтаж типового оборудования, что, с учетом значительного снижения энергозатрат, упрощения процесса и повышения чистоты целевого продукта, позволит достаточно быстро окупить произведенные затраты.
Формула изобретения
РИСУНКИ
Рисунок 1