Способ определения ионных токов мультиплетов масс в магнитном масс-спектрометре
Назначение: масс-спектрометрия. Сущность изобретения: перед разделением ионного луча в магнитном поле масс-спектрометра измеряют постоянную на протяжении всего цикла измерении часть ионного тока Iс луча, а искомую величину Ij ионного тока, соответствующую j-ой компоненте мультиплета находят из соотношения: где, ij - ионный ток соответствующий j-ой компоненте мультиплета, измеренный после разделения мультиплета масс, имеющего n - компонент. Способ обеспечивает повышение точности. 1 ил.
Изобретение относится к области масс-спектрометрии, в частности к способам измерения ионных токов мультиплетов масс в магнитных масс-спектрометрах.
Известен способ измерения ионных токов мультиплетов масс, использованный в масс-спектрометре МИ1201В (I). Способ состоит в формировании ионного луча в источнике ионов, разделении его на мультиплетные пики в магнитном поле и измерении ионных токов соответствующих мультиплетным массам с помощью детекторов ионов. Недостатком данного способа является низкая точность измерения мультиплетных ионных токов, что связано с непостоянством положения ионных лучей относительно узких входных щелей детекторов ионов, нестабильностью работы ионных детекторов, производящих умножения слабого сигнала. Изестен способ измерения ионных токов мультиплетов масс в магнитном резонансном масс-спектрометре (МРМС), описанный в (2), состоящий в формировании ионного луча, разделении его в магнитном поле и измерении ионных токов соответствующих мультиплетным массам. Принцип действия МРМС позволяет достичь высокого разрешения, однако используемая при этом энергетическая модуляция пучка приводит к резкому (почти в 100 раз) уменьшению ионного тока на входе детектора по сравнению с током источника ионов. По этой причине статистические флуктуации тока на входе детектора принципиально ограничивают точность измерения ионных токов, что и является недостатком данного способа. Известен способ измерения ионных токов мультиплетов масс, в магнитном масс-спектрометре МИ3305, описанный в (3), взятый в качестве прототипа. Измерение ионных токов мультиплетов масс с помощью этого способа осуществляется путем формирования ионного луча в источнике ионов, разделения его на мультиплетные пики в магнитном поле и измерения ионных токов соответствующих, мультиплетным массам с помощью детектора ионов. Недостатком данного способа является недостаточно высокая точность измерения, связанная с флуктуациями ионного луча в магнитном поле, малой шириной щели детектора ионов при работе на максимальной разрешающей способности, а также с нестабильностью работы системы регистрации. Задача предлагаемого изобретения состоит в увеличении точности измерения мультиплетных ионных токов в магнитном масс-спектрометре. Данная задача решается тем, что в известном способе измерения ионных токов мультиплетов масс в магнитном масс-спектрометре путем формирования ионного луча, разделения его на мультиплетные пики в магнитном поле и измерения ионных токов, соответствующих мультиплетным массам, согласно формуле изобретения, перед разделением ионного луча измеряют постоянную на протяжении всего цикла измерении часть ионного тока Ic луча, а искомую величину Ij ионного тока, соответствующую j-ой компоненте мультиплета находят из соотношения:








относительные погрешности измерения токов I1, i1, i2. Если основной составляющей погрешности измерения ионных токов после разделения лучей мультиплета являются статистические флуктуации величины тока, то, полагая,










Другим существенным признаком является определение значения тока, соответствующего j-ой компоненте мультиплета масс с помощью предложенного авторами соотношения (1). Мультиплетные токи в ионный ток луча входят в одних и тех же пропорциях до и после разделения луча. Однако из-за неизбежных потерь при разделении ионного луча и регистрации мултиплетных ионных токов значение последних уменьшается на один-три порядка. Поэтому, определив часть ионного тока Ic до разделения и пропорции между мультиплетными токами после разделения, с помощью соотношения (1) можно восстановить составляющие тока Ij, соответствующие разным компонентам мультиплета. Как видно из выражения (3а) и (3б) измeренные таким способом значения мультиплетных ионных токов оказываются точнее по сравнению с мультиплетными токами, измеренными после полного разделения ионного луча. На чертеже приведена блок-схема устройства, реализующего заявленный способ. Устройство состоит из источника ионов 1, сеточного коллектора 2, разделяющего магнита 3 и системы регистрации ионного тока, представляющей собой вторично электронный умножитель 4. Устройство работает следующим образом: в источнике ионов 1 формируется ионный луч путем ионизации остаточного газа электронным ударом. Сформированный ионный луч до разделения в поле магнита 3 проходит через сеточный коллектор 2, установленный между источником ионов и разделяющим магнитом. Сеточный коллектор задерживает определенную часть ионного тока в зависимости от прозрачности сетки. Оставшаяся часть ионного луча в поле разделяющего магнита 3 разделяется на мультиплетные ионные токи. С помощью системы регистрации 4 измеряются ионные токи каждой мультиплетной массы. П р и м е р конкретной реализации способа
С помощью данного способа на масс-спектрометре МИ1201В проводились измерения ионных токов 3H+ из мультиплета с массой 3 а.е В источнике ионов 1 формировался ионный луч, полученный путем ионизации остаточного газа электронным ударом. Ионный луч имел прямоугольное сечение высотой 6 мм, шириной 0,1 мм и энергию 5 КэВ. Измерение постоянной части ионного тока луча Ic до разделения на мултиплетные токи осуществлялось с помощью сеточного коллектора 2. Сеточный коллектор размером 4х8 мм и ячейкой 20х20 мкм, имеющий прозрачность 70% в специальной металлической оправе размещался на пути ионного луча, на расстоянии 10 мм от выходной щели источника ионов. Значение тока Ic соответствии с прозрачностью сетки коллектора равнялась 30% от общего ионного тока луча. Ток сетки через экранированный провод подавался на вход электрометрического усилителя, где производилось его измерение. После прохождения через сеточный коллектор, оставшаяся часть луча (70%) проходила в секторное магнитное поле 3, где осуществлялось разделение его на мультиплетные токи. Полученные после разделения мультиплетные токи i1 и i2 соответствующие 3H+ и неразделенному дублету (HD+ -HHH+) поочередно измерялись с помощью вторично электронного умножителя ВЭУ-1А. Значения токов i1 и i2 и их соотношения регулировалось изменением количества и состава напускаемой в камеру газовой смеси. Для получения необходимой разрешающей способности, позволяющей разделить мултиплетные пики 3H+ и (HD+ -HHH+) входная щель детектора ионов была установлена в пределах 20 мкм, что привело к уменьшению ионного тока i1 в 100 раз по сравнению с неразделенным током I1 соответствующего мультиплета и увеличению погрешности измерения i1. Установлено, что при значениях токов i1 и I1 соответственно



1. Масс-спектрометр МИ1201В Техническое описание и инструкция по эксплуатации 3.394.018 ТО 1989г. 2. Б. А. Мамырин, Б.Н.Шустров, Г.С.Ануфриев и др. Магнитный резонансный масс-спектрометр для изучения природного состава гелия. Приборы и техника эксперимента, 1972, N 6, с.148-150. 3. В.Т.Ненарокомова, А.И.Масленников и др. Специализированный масс-спектрометр для анализа легких газов ВАНТ, серия: Радиационная техника, выпуск 1(32), 1986, с. 39.
Формула изобретения

где ij ионный ток, соответствующий j-й компоненте мультиплета, измеренный после разделения мультиплета масс, имеющего n компонент.
РИСУНКИ
Рисунок 1
Похожие патенты:
Масс-спектрометр // 1839274
Изобретение относится к физической электронике , в частности к приборам для анализа состава пучков ускоренных ионов путем измерения их отношения массы к заряду
Изобретение относится к физической электронике, в частности к разделению пучков ускоренных ионов
Изобретение относится к масс-спектрометрии и может быть использовано для определения химического или изотопного состава веществ
Ионный микрозондовый анализатор // 1605288
Изобретение относится к научному приборостроению, в частности к ионно-оптическим приборам для локального микроанализа методом масс-спектрометрии вторичных ионов, и может быть использовано для химического или изотопного анализа состава вещества, получения увеличенных изображений поверхности твердых тел в ионах выбранного типа, а также в технологии производства полупроводниковых материалов для легирования их ионами различной природы
Космический магнитный спектрометр // 1596401
Изобретение относится к экспериментальной физике, в частности к экспериментальным методам физики космических лучей
Многоканальный анализатор атомных частиц // 1447196
Способ измерения удельного заряда частиц // 1326100
Масс-спектрометр // 1305795
Изобретение относится к области приборостроения и может быть использовано для элементного анализа твердых тел
Изобретение относится к области масс-спектрометрии
Изобретение относится к ядерной технике
Масс-спектрометр ишкова // 2143110
Изобретение относится к технической физике и может быть использовано для анализа состава материалов и веществ