Способ определения концентрации электролита
Использование: аналитическое приборостроение, в частности, химическая промышленность. Сущность изобретения: способ определения концентрации электролита с помощью ячейки, включенной в цепь генератора частоты, заключается в том, что через равные промежутки времени измеряют частоту. Изменяют частоту генератора, на каждой частоте находят погрешность измерения частоты. По частоте, соответствующей минимальной погрешности, определяют концентрацию электролита. 2 ил.
Изобретение определения концентрации электролитов относится к области физико-химических исследований и может быть использовано в химической и других родственных с ней отраслях промышленности.
Известен аналого-частотный способ определения электролитов (1) [Усиков С. В. Электрометрия жидкостей. -Л. Химия, 1974, с.95-98] заключающийся в преобразовании изменения емкости чувствительного элемента с воздухом и жидкостью в соответствующее изменение частоты и напряжения генератора и решению полученных зависимостей для определения искомой концентрации электролита. Недостатком способа является низкие точность и оперативность, связанная с настройкой контура в резонанс недостаточно широкий диапазон измерений. Наиболее близким является амплитудно-частотный способ определения концентрации электролита(2) [Лопатин Б. А. Высокочастотное титрование с многозвенными ячейками. -М. Химия, 1980, с.9-13] размещенного в емкостной измерительной ячейке с n звеньями резонансной частотно-задающей цепи генератора высокой частоты и подбору резонансной частоты по амплитудно-частотной характеристике, включающей измерение частоты и напряжения через равные промежутки времени, расчет параметров электролита по измеряемой частоте. Недостатком этого способа являются низкие точность и оперативность, связанные с заменой одной ячейки на другую, недостаточно широкий диапазон измерения, так как каждая ячейка работает только в своем диапазоне, большая методическая погрешность обусловленная тем, что искомые характеристики электролита хотя и находятся через частоту, но путем дополнительного преобразования амплитудно-частотной характеристики. Техническим результатом изобретения является повышение точности определения характеристик электролитов в широком диапазоне концентраций. Технический результат достигается тем, что: в способе определения концентрации электролита размещенного в измерительной ячейке, включенной в цепь генератора частоты, расчет параметров электролита по резонансной частоте, в отличие от известных решений, резонансную частоту определяют по минимому погрешности измерения частоты, по резонансной частоте расчитывают искомую концентрацию электролита. Сущность изобретения заключается в следующем. Исследуемый раствор электролита помещается в измерительную ячейку. Исходя из предположения о составе электролита, как совокупности положительно и отрицательно заряженных ионов можно предложить схему замещения ячейки с помещенным в нее электролитом показанную на фиг.1. При этом возникновение емкости обусловленно, как поляризационными эффектами, так и емкостями возникающими между положительно и отрицательно заряженными ионами, как обкладками миниконденсаторов. Индуктивность возникает как проявление кинетической энергии иона, как заряженной частицы, при движении его под действием приложенного к электродам внешнего элекромагнитного поля. Сопротивление раствора представляет результат взаимодействия ионов между собой, препятствующее направленному движению ионов между электродами. Таким образом комплексное сопротивление ячейки с раствором:







Для прототипа, например для ячейки RL-типа (Лопатин Б.А. Высокочастотное титрование с многозвенными ячейками. -М: Химия, 1980, с.107), выразим x через









где






Подставив значения







Учитывая, что


Решая уравнение, получаем:

где

Чувствительность

Учитывая, что отношение чувствительностей есть отношение точностей, получаем выражение для определения коэффициента эффективности по точности для предлагаемого технического решения:

Подставляя данные реальных ячеек получаем при L 2 мкГн, L' 33 мГн, С 10 нФ, C' 40 пФ R 1кОм, для x 0,5 см, получаем h = 67,97, т.е. примерно на 2 порядка. Способ апробирован на экспериментальной установке, созданной на базе микропроцессорного кондуктометра КЛ-4 "Импульс", выполненного на микропроцессорном комплекте К1801. При измерениях использовались контактные первичные преобразователи удельной электрической проводимости с платиновыми электродами. В качестве проводящей среды использовались модельные растворы NaCI. Измерения проводились при различных частотах питания измерительной цепи в диапазоне от 5 Гц до 5 кГц. В качестве примера на фиг.2 приведены графики зависимости относительной погрешности

Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких расплавов и растворов в условиях действия внешних (сторонних) источников тока либо при их отсутствии, в том числе в локальных объемах расплавов и растворов с высокой температурой нагрева, агрессивностью и вязкостью
Изобретение относится к способам определения концентрации газов и может быть использовано при разработке приборов для различных отраслей промышленности, где в качестве первичного преобразователя (далее по тексту датчик) применяют датчики с нелинейной характеристикой
Кондуктометрический датчик колебаний // 2055352
Изобретение относится к измерительной технике, в частности, к устройствам для измерения удельной электропроводности жидких растворов и расплавов, в том числе в узких локальных объемах в условиях действия нескольких внешних (сторонних) источников тока при пониженной плотности тока и повышенной вязкости среды
Изобретение относится к материаловедению и может быть использовано для анализа твердых и жидких веществ, в частности пород, минералов, полупроводников, биологически активных жидкостей и т.д
Способ оценки совместимости реагентов // 2045051
Изобретение относится к технике измерений, в частности к оценке свойств веществ, и может быть использовано в нефтедобывающей промышленности при подготовке различных реагентов и их композиций для борьбы с отложениями в призабойной зоне продуктивных пластов
Влагомер пиломатериалов в штабеле // 2042130
Изобретение относится к химическому производству, а именно к технологическим процессам получения кислот, в частности к производству серной кислоты
Изобретение относится к области физики-химических исследований и может быть использовано в химической и других родственных с ней отраслях промышленности
Изобретение относится к измерительной технике, в частности к измерению электрофизических параметров плодов и овощей, и может быть использовано при определении спелости, пригодности к дальнейшему хранению плодов и овощей, содержания в них нитратов и т.д
Изобретение относится к устройствам для измерения свойств жидкостей, в частности удельного электрического сопротивления
Изобретение относится к измерительной технике и может быть использовано в океанологических исследованиях, для определения содержания растворенных в воде солей и примесей в системах тепловодоснабжения, контроля сточных вод
Изобретение относится к области приборостроения, конструированию измерителей влажности газа, первичным преобразователем которых служит электролитический влагочувствительный элемент (ЭВЧЭ), и может найти применение в установках осушения воздуха, в электросвязи для содержания кабелей под избыточным воздушным давлением, а также в технологических процессах, где необходимо поддерживать влажность воздуха на заданном уровне в потоке газа или в замкнутом объеме
Изобретение относится к автоматическому, неразрушающему и экспрессному контролю состава растворов и может найти применение к области электроаналитической химии топлив, объектов окружающей среды и технологий