Способ определения местоположения и интенсивности зон поглощения
Изобретение относится к бурению геологоразведочных, нефтяных и газовых скважин. Цель изобретения - повышение достоверности результатов исследования с одновременным сокращением времени исследования. Для этого в скважине создают ударные гидродинамические волны давления. Параметры волновых полей, характеризующие взаимодействие волн давления с окружающей средой и контактной поверхностью в скважине, измеряют установленными в скважине датчиками и регистрируют в виде ударных диаграмм на экране осциллографа. По полученным осциллограммам определяют местоположение и интенсивность зон поглощения. Использование данного метода позволяет значительно сократить время исследования скважины и повысить достоверность полученных результатов исследования даже в тех случаях, когда невозможно проведение исследований традиционными методами (кавернозность, слабая прочность стенок скважины вблизи зоны исследования, высокая температура в стволе скважины). 3 ил.
Изобретение касается определения местоположения зон поглощения промывочной жидкости при бурении геологоразведочных, нефтяных и газовых скважин и может быть использовано при исследованиях скважин в период разведочного и эксплуатационного бурения.
При бурении скважины в условиях поглощения промывочной жидкости одной из основных задач для определения возможности ликвидации осложнений является определение местоположения поглощающего пласта. Известно, что поглощение промывочной жидкости в бурящейся скважине обычно устанавливают по падению давления на устье скважины, а также по частичной потере циркуляции. Этот метод основан на неоднократных замерах расходов входящей и выходящей из циркуляционной системы жидкости при различных подачах насосов. Для выделения интервалов, в которых наиболее вероятно поглощение промывочной жидкости, проводят комплекс промыслово-геофизических методов исследования поглощающих пластов: замеры электротермометром, резистивеметром; фотографирование стенок скважины; микрокаротаж; радиоактивный каротаж; акустический каротаж. Гидродинамические методы исследования наряду с определением интервалов зон поглощения позволяют получить сведения об интенсивности поглощающего пласта, позволяют определить его проницаемость. В прототипе предлагаемого изобретения (авт. св. N 1208212) динамическое состояние скважины создают путем нагнетания через герметизатор устья сжатого воздуха. С помощью скважинного расходомера манометра в различных точках по стволу скважины, после установления постоянного режима нагнетания, измеряют расход воздуха выше статического уровня жидкости, а также расход и давление на обводненном участке скважины. По по- лученным данным строят расходограмму, отображающую характер изменения значений расхода воздуха в различных по глубине точках скважины. Для выполнения измерений в двух точках потребовалось время 15 мин. Целью изобретения является повышение достоверности результатов исследования с одновременным сокращением времени исследования. Поставленная цель достигается тем, что динамическое состояние заполненной водой скважины создают посредством гидравлического удара и по изменению величины падения импульсных гидродинамических давлений в момент пробега ударной волной зоны поглощения и значению времени ее пробега от устья скважины до зоны поглощения определяют местоположение и интенсивность зон поглощения. Сущность предлагаемого изобретения основана на закономерностях распространения ударных волн в сжимаемой вязкой жидкости, взаимодействии импульсных гидродинамических волн давления с окружающей средой и контактной поверхностью и влиянии зон поглощения на волновые процессы в скважине. Способ основан на использовании ударных гидродинамических волн давления, возникающих в результате ударного сжатия столба жидкости, заполняющей скважину, под влиянием внешнего воздействия в виде гидравлического удара и анализе параметров волновых полей, характеризующих особенности поведения ударных волн вблизи зон поглощения. Для определения качественных и количественных характеристик поглощающего пласта и исследования взаимного влияния волновых процессов в скважине и потока жидкости, фильтрующегося через контактную поверхность зоны поглощения, выведены основные уравнения, описывающие неустановившееся движение жидкости в стволе скважины и в зоне фильтрации. При рассмотрении нестационарного процесса в масштабе длины скважины принята идея И. А. Чарного о возможности считать связь между локальными характеристиками гидродинамического потока стационарной [1] Движение считается изотермическим, скважина рассматривается как вертикальная абсолютно жесткая труба. Для вывода уравнений гидравлического удара рассмотрен выделенный двумя горизонтальными сечениями Х и Х +





















































m



w(1)=

























w(1)









Pmi=exp (-



х расстояние. Среди оставшихся составляющих Рi(х, t) находят точку i начала падения давления. Параметр х этой точки определяет расстояние от начала участка интегрирования (устья скважины) до зоны поглощения. По величине падения давления

Q

t to + (l Xгс)/С, после отражения от забоя (обратная волна), возвращается к месту установки источника. Для измерения параметров волновых полей в стволе скважины вблизи источника гидроудара на расстоянии Хд1 и на расстоянии Хд2 от устья, перемещаются глубинные части приборов с пьезоэлектрическими датчиками, сигналы с которых регистрируются на экране двухлучевого осциллографа. Зная расстояние между датчиками и определяя по осциллограмме время пробега этого расстояния ударной волной, находят скорость распространения ударной волны
C (Хд2-Хд1)/t. В момент пробега поглощающего пласта часть энергии ударной волны расходуется на взаимодействие с контактной поверхностью зоны поглощения, так как давление на фронте ударной волны является источником вторичного гидроудара, волна давления которого проникает в каналы зоны поглощения. Это явление отмечается на ударной диаграмме падением высоты давления. Определяя по диаграмме время пробега ударной волной расстояния до начала падения давления t* и умножая его половину на С, находят расстояние S, определяющее местоположение зоны поглощения относительно устья скважины. По величине падения давления (

C1

C2

Диаграмма сигналов, измеряемых датчиком 2, и схема эксперимента показаны на фиг. 3. Анализ диаграммы производился следующим образом: Первый скачок давления соответствует приходу в точку регистрации прямой волны в момент времени
(Хд2-Хгс)/С 0,134 с. Второй скачок ударного давления соответствует приходу в точку регистрации волны, отраженной от забоя скважины в момент времени
(2l-Хд2-Хгс)/С 0,91 с. Влияние зоны поглощения на волновые характеристики отмечается падением высоты давления. Определив по диаграмме расстояние от начала падения давления, нашли расстояние, определяющее местоположение зоны поглощения относительно устья скважины. S C * t*/2 (1343

Q K/




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3