Автокоррелятор световых импульсов
Изобретение относится к оптике, в частности к устройствам для измерения длительности сверхкоротких лазерных импульсов методом регистрации автокорреляционной функции интенсивности. Применение изобретения позволит упростить конструкцию и юстировку автокоррелятора. Данный результат достигается тем, что в автокорреляторе, содержащем делитель светового пучка, линию переменной оптической задержки, узел совмещения прямого и задержанного пучков, оптически сопряженные с узлом регистрации, делитель светового пучка, линия переменной оптической задержки и узел совмещения прямого и задержанного пучков выполнены в виде плоскопараллельной двулучепреломляющей пластинки, установленной с возможностью поворота ее вокруг оси, перпендикулярной главной плоскости пластинки. В схему также введена вторая плоскопараллельная двулучепреломляющая пластинка, установленная на оптической оси, при этом главная плоскость ее совпадает или перпендикулярна главной плоскости первой пластинки. 1 ил.
Изобретение относится к оптике, в частности к устройствам для измерения параметров лазерного излучения.
В лазерной технике известны автокорреляторы, предназначенные для измерения длительности сверхкоротких световых импульсов методом регистрации корреляционной функции интенсивности двух импульсов, полученных делением амплитуды исходного импульса, причем один из импульсов следует с регулируемой задержкой [1] Схема автокоррелятора аналогична схеме интерферометра Майкельсона и содержит делитель светового пучка, линию переменной оптической задержки, вносящую регулируемое запаздывание в один из пучков, узел совмещения прямого и задержанного пучков и приемное устройство, осуществляющее функцию перемножения интенсивностей пучков на основе эффекта генерации второй гармоники в нелинейном кристалле. Известные схемы автокорреляторов различаются устройством линии задержки. Недостатком известных автокорреляторов является сложность конструкции и настройки, связанная с необходимостью точной взаимной юстировки всех элементов схемы. Наиболее близким к заявляемому устройству является принятый за прототип автокоррелятор [2] Прототип содержит делитель пучка, выполненный в виде полупрозрачного зеркала, два концевых отражателя, один из которых может поступательно перемещаться, образуя линию переменной оптической задержки, и приемное устройство. Два пучка, полученные после делителя, отражаются от концевых отражателей, совмещаются на полупрозрачном зеркале по сечению и направлению и направляют на приемное устройство. Недостатком прототипа, как и других автокорреляторов, является сложность конструкции и юстировки схемы. Задача, которая решалась при разработке заявляемого устройства, заключалась в том, чтобы разделить исходный пучок на два и внести заданное запаздывание одного пучка относительно другого, оставляя их пространственно совмещенными. Результатом этого явилось бы существенное упрощение конструкции и юстировки автокоррелятора. Указанный результат достигается в автокорреляторе световых импульсов, содержащем делитель светового пучка, линию переменной оптической задержки, узел совмещения прямого и задержанного пучков, оптически сопряженные с узлом регистрации, отличающемся тем, что делитель светового пучка, линия переменной оптической задержки и узел совмещения прямого и задержанного пучков выполнены в виде плоскопараллельной двулучепреломляющей пластинки, установленной с возможностью поворота ее вокруг оси, перпендикулярной главной плоскости пластинки, а также в схему введена вторая плоскопараллельная двулучепреломляющая пластинка, установленная на оптической оси, при этом главная плоскость ее совпадает или перпендикулярна главной плоскости первой пластинки. Сущность изобретения заключается в том, что деление светового пучка на два и задержка одного пучка относительно другого реализуются в двулучепреломляющей пластинке, при этом один пучок является обыкновенной волной, а другой необыкновенной; каждая из волн распространяется со своей групповой скоростью. Величина относительной задержки равна алгебраической сумме задержек, которые вносят две пластинки, и зависит от угла между оптической осью пластинки и осью пучка в каждой пластинке. Первая двулучепреломляющая пластинка вносит переменную задержку, величина которой изменяется при повороте пластинки. Вторая двулучепреломляющая пластинка установлена так, что она вносит фиксированную задержку противоположного знака по сравнению с задержкой, которую вносит первая пластинка. Благодаря этому: суммарная задержка в двух пластинках может быть как положительной, так и отрицательной; регистрируется полная автокорреляционная функция; путем выбора величины фиксированной задержки рабочая точка автокоррелятора (










Ф1 угол между оптической осью Z1 первой пластинки 2 и осью пучка 1;
Ф2 угол между оптической осью Z2 второй пластинки 3 и осью пучка 1. Две волны, прошедшие пластинки 2 и 3, имеют одинаковую амплитуду, совмещены по сечению и направлению распространения и имеют относительный временной сдвиг

При вращении пластинки 2 вокруг оси О-О задержка периодически изменяется, что позволяет регистрировать автокорреляционную функцию светового импульса за каждый оборот пластинки 2. Два пучка, прошедшие пластинки 2 и 3, поляризованы в вертикальной и горизонтальной плоскостях. Если в приемном устройстве 4 для генерации второй гармоники используется 2-ой тип взаимодействия, ось нелинейного кристалла ориентируется в вертикальной или горизонтальной плоскостях, если используется 1-ый тип воздействия, ось кристалла ориентируется в плоскости, наклонной под углом 45о к указанным плоскостям. Для измерения длительности спектрально-ограниченных импульсов могут использоваться автокорреляторы с регистрацией корреляционной функции амплитуд (интенсивности интерференции прямого и задержанного импульсов). В этом случае генератор второй гармоники не используется, а для обеспечения интерференции прямого и задержанного импульсов перед приемником излучения устанавливается соответствующим образом ориентированный анализатор. По данному техническому решению были проведены расчеты величины относительной задержки между импульсами и уширения импульсов за счет дисперсии групповых скоростей в материале пластинок. Расчеты проводились для группы кристаллов, широко используемых в нелинейной оптике. Расчеты показывают, что при толщине пластинок 2-5 мм (кристаллы ВВО, DKDP) задержка достигает

Формула изобретения
РИСУНКИ
Рисунок 1