Тампонажный раствор для цементирования газонефтяных скважин и способ его приготовления
Использование: для крепления газонефтяных скважин. Сущность изобретения: тампонажный раствор содержит тампонажный цемент, микрокремнезем - отход производства феррокремнезема, и воду. При необходимости в раствор можно ввести гипс, утяжелитель, диспергатор и регулятор сроков схватывания. Тампонажный раствор готовят следующим образом. 10% от массы цемента вводят в воду. Затем в полученную суспензию последовательно вводят микрокремнезем, утяжелитель, гипс и оставшуюся часть цемента. 2 с. и 3 з. п. ф-лы, 13 табл.
Изобретение относится к тампонажному раствору и способу приготовления тампонажного раствора, который используют при цементировании газонефтяных скважин, рассчитанных на температуру свыше 110оС.
При цементировании обсадной трубы против проницаемых формаций может возникнуть проблема потерь жидкости из цементного шлама в формацию, если отфильтрованный осадок удаляют перед процессом цементирования. Когда это происходит, существует риск того, что цемент вблизи формации будет обладать повышенной проницаемостью и, следовательно, возникнет риск газовой миграции, а также процесс цементирования окажется неудачным. Для предотвращения такого исхода применяют поставляемые на мировой рынок органические добавки, предотвращающие потери текучей среды, в большинстве своем полимеры, которые в сочетании с диспергаторами образуют растворы с хорошими свойствами в отношении снижения потерь за счет фильтрования. Такие тампонажные растворы часто являются механически нестойкими, проявляя тенденцию к седиментации. Когда скорость осаждения высока, могут возникнуть серьезные проблемы снижения качества цемента, в особенности при прямом бурении под большим углом, где возможен риск того, что верхняя часть обсадной трубы останется незацементированной. Кроме того, такие добавки очень дороги. Для цементирования глубоких скважин с высокой температурой требуется цемент с особыми качествами. Плотность его должна быть относительно высокой (






При реакции портландцемента с водой продукты гидратации С3S и бета-C2S практически идентичны тем, которые образуются при нормальных температурах, т.е. в интервале 0-100оС. Такая реакция протекает следующим образом:
1 С3S + 2H2O ____ SCH + 2Ca/OH/2
11 С2S + 2H2O ____ SCH + Ca/OH/2
Но скорость гидратации для трикальцийсиликата в несколько раз превышает скорость гидратации дикальцийсиликата. Эти реакции являются нестехиометрическими. Величины соотношения между С и S в образующемся CSH находятся в интервале от 1 до более 1,5 в зависимости от условий протекания реакции. Гидраты окисей кальция, которые образуются, кристаллизуются в большие формирующие скважину кристаллы, называемые "портландитом", которые легко идентифицируются под микроскопом. С другой стороны, фазы СSH больше напоминают гель, аморфный в Х-лучах, и поэтому его точный анализ сопряжен со значительными затруднениями. Наиболее приемлемыми методами являются количественные Х-лучевой дифракционный анализ кристаллических фаз и Х-лучевой анализ аморфных фаз. Конкретные реакционные продукты зависят от скорости реакции и видов других ионов в растворе, в особенности щелочи. Стойкость механической структуры образующихся агрегатов в цементе и бетоне при нормальных температурах обеспечивается именно фазами CSH. Прочность и стойкость структуры конечного продукта со снижением содержания щелочи и скорости реакции повышаются. Существует большое число кальцийсиликатгидратов, которые могут образовываться в процессе гидратации цемента. В табл. 1 (взята из работы Гундлаха М. Dampgehartete Baustaffe, изд-во Baueverlag CmbH, 1973) перечислены некоторые из большинства кальцийсиликатгидратов, которые встречаются в природе. В этой серии кальцийсиликатгидратов способность создавать структуру с высокой прочностью и низкой проницаемостью изменяется в широком диапазоне. Первичные фазы C-S-H (I) и C-S-H (II), которые образуются при низких температурах приблизительно до 100оС. Под действием такой температуры они медленно образуют кристаллический II

0,83C/S






При температурах приблизительно 500оС, соответственно, 400оС они превращаются в бета-волластонит и альфа-волластонит. Как ксонотлит, так и трускоттит, обладают приемлемыми физическими свойствами, если иметь в виду прочность и проницаемость, и являются тем, что нужно было бы иметь для цементирования при температурах свыше 150оС. В том случае, когда имеется избыток извести, т.е. когда величина отношения C/S превышает 0,8-1,0, тоберморит не обладает проч- ностью при температурах свыше примерно 100оС. При этом протекает следующая реакция: Тоберморит C5S6H5+ Ca/OH/2 ____ альфа-C2SH
Образуется альфа-дикальцийсиликатгидрат. Механическая прочность такой фазы составляет приблизительно 10% от прочности тоберморита. Именно такая реакция является главной причиной падения прочности портландцемента при высокой температуре. Эта реакция всегда протекает при температурах, превышающих приблизительно 120оС, когда присутствует избыток извести. С целью предотвращения возможности протекания реакций такого типа избыток извести необходимо удалить регулированием величины соотношения C/S. На практике это можно сделать добавлением в цементную смесь кремневой кислоты, SiO2 (кремнезема). При температуре в интервале 110-150оС идеальными является отношение C/S, равное 0,83, которое соответствует составу тоберморита. При температуре выше 150оС образуется ксонотлит, а величина отношения C/S для этой фазы равна 1,0. В ходе различных реакций превращения образуются новые кристаллы. Такая перекристаллизация оказывает действие на микроструктуру и приводит к изменению прочностных свойств, но она также воздействует на макроструктуру и приводит к изменению проницаемости. Падение прочности часто сопровождается значительным повышением проницаемости цемента. Такая проницаемость способна обусловить невозможность изолирования в скважине одной зоны от другой, цемент подвергается химическому действию и теряется его способность защищать обсадные трубы от коррозии. Микрокремнезем представляет собой кремнеземную пыль, которую собирают из печей для плавления феррокремнезема. Такая пыль состоит из очень мелких (средний размер 0,1-0,2 мкм) аморфных частиц, которые поступают на рынок в виде стойких суспензий. Эти суспензии могут быть также приготовлены с использованием обычных диспергаторов, выпускаемых фирмами, которые поставляют производителям цемента вспомогательные продукты, однако микрокремнезем можно также диспергировать без диспергатора как в кислой, так и в щелочной среде. Теоретически микрокремнеземные суспензии обладают свойствами, которые представляют интерес в связи со свойствами целевого цемента. Размеры частиц представляют интерес в отношении снижения потерь текучей среды и механической стойкости цементного шлама. По этой причине было проведено несколько экспериментов с добавлением микрокремнезема в гидравлический цемент. Подбирали концентрированные цементные смеси с плотностями


Kg=

qa объемная скорость потока воздуха, см3/с;
L длина образца сердечника, см;
А площадь поперечного сечения, мм2;
С перепад давления между давлением потока внутри и давлением потока, вытекающего из образца (принимается в расчет вязкость воздуха). Химические агенты:
Продукт EMSAC 460S Микрокремнеземный шлам, 50%-ная суспензия
(Элкем Бремангер Смелтеверн), 50,91 и соответствует
33%-ному добавлению микрокремнезема
Д 31LN Диспергатор (ВГ)
Веллсан Q 70 Диспергатор (Элкем)
Д-604 Диспергатор (Доуэлл)
R-12L Замедлитель процесса схватывания (ВГ)
Д 110 Замедлитель процесса схватывания (ВГ)
Гипс Дигатрад сульфата кальция (Анчор)
Морская вода Ускоритель
Гематит Утяжеляющий компонент (Халлибуртон)
Стальные сферы Утяжеляющий компонент (Авеста Ниби Паудер АВ)
В табл. 2-6 приведены результаты измерений реологии, потерь текучей среды, времени сгущения и прочности при сжатии при температуре 50, 70, 90, 120 и 143оС для различных цементных смесей. Результаты, приведенные в этих таблицах, показывают возможность приготовления цементного шлака (

Степень диспергирования мелких частиц микрокремнезема имеет жизненно важное значение для борьбы с потерями текучей среды. Были также проведены эксперименты с цементными смесями плотностью 2,2 г/см3 (тяжелые цементы). Полученные результаты сведены в табл. 11. Смеси содержат 35% микрокремнезема, количество воды в пересчете на вес сухого вещества составляет 23,4% В качестве утяжеляющего компонента в составе этих смесей используют гематит. Для тяжелых цементов правомерно также использовать те же достоинства, которые описаны для цементных шламов плотностью 1,9 г/см3. Реологические свойства и стабильность тяжелых цементов являются исключительно хорошими в сравнении с соответствующими свойствами "ординарных" смесей, для которых именно реология является одной из основных проблем. По истечении 7 дней прочность при сжатии составляет 17000 фунт/дюйм2, 1195 кг/см2. В табл. 12 приведены результаты экспериментов, которые были проведены с цементной смесью плотностью 2,4 г/см3. Воду добавляли в количестве 17,8% в пересчете на общее количество сухого вещества. При этом использован более концентрированный (55%-ный) раствор продукта EMSAC. Можно также приготовить цементные шламы с плотностями до



Формула изобретения
Тампонажный цемент - 100
Микрокремнезем - отход производства феррокремнезема - 35 - 44
а воду он содержит в количестве, обеспечивающем водосмесевое отношение 0,15 - 0,40, при этом состав может дополнительно содержать утяжелитель в количестве 0 - 100 мас. ч. и гипс в количестве 0 - 15 мас. ч. 2. Раствор по п. 1, отличающийся тем, что он дополнительно содержит диспергатор и/или регулятор сроков схватывания. 3. Способ приготовления тампонажного раствора для цементирования газонефтяных скважин, включающий смешение тампонажного цемента с кремнеземсодержащей добавкой и водой, отличающийся тем, что предварительно в воду вводят 10% от общего количества тампонажного цемента с последующим введением последовательно кремнеземсодержащей добавки в количестве 0 - 100%, тяжелителя - 35 - 44% и гипса - 0 - 15% от общей массы цемента и остальную часть цемента, при этом в качестве кремнеземсодержащей добавки используют микрокремнезем - отход производства феррокремнезема, а воду используют в количестве, обеспечивающем заданную плотность тампонажного раствора. 4. Способ по п.3, отличающийся тем, что микрокремнезем предварительно смешивают с водой. 5. Способ по п.3, отличающийся тем, что перед введением цемента в воде растворяют диспергатор и/или регулятор срока схватывания.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9
Похожие патенты:
Изобретение относится к бурению скважин, а именно к способам получения буровых технологических жидкостей
Буферная жидкость // 2052076
Изобретение относится к бурению и креплению нефтяных и газовых скважин, а именно к составам буферных жидкостей
Гелеобразующий состав // 2052075
Изобретение относится к бурению скважин и разработке месторождений, а именно к составам для тампонирования пластов с целью ликвидации поглощений, газоводопроявлений, заколонных перетоков и выравнивания профиля приемистости нагнетательных скважин
Тампонажная смесь // 2052074
Способ заканчивания скважин // 2051274
Изобретение относится к заканчиванию горизонтальных, наклонно-направленных и вертикальных скважин с различным типом коллекторов
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для изоляции пласта при бурении и ремонте скважин
Способ селективной изоляции водопритока // 2046185
Изобретение относится к нефтедобывающей промышленности, в частности, к способам селективной изоляции водопритока в неоднородных по проницаемости пластах
Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки неоднородного пласта нефтяной залежи заводнением
Изобретение относится к горному делу и может использоваться для цементирования нефтяных и газовых скважин с аномально низкими пластовыми давлениями
Способ получения цемента // 2101246
Изобретение относится к строительным материалам, а именно к производству тампонажного цемента
Способ подготовки скважины к цементированию // 2102581
Изобретение относится к глубокому бурению, в частности к способам подготовки нефтегазовых, геотермальных и других специальных скважин к цементированию
Состав для блокирования водоносных пластов // 2102593
Изобретение относится к нефтегазодобывающей промышленности, а именно к составам для блокирования или ограничения водопритока в скважины и зон поглощения как в терригенных, так и карбонатных коллекторах и для выравнивания профиля приемистости в нагревательных скважинах
Тампонажный раствор // 2103476
Состав для блокирования водоносных пластов // 2103497
Изобретение относится к нефтегазодобывающей промышленности, а именно к составам для блокирования или ограничения водопритока в скважины и зон поглощения как в терригенных, так и в карбонатных коллекторах, а также для выравнивания профиля приемистости в нагнетательных скважинах
Состав для блокирования водоносных пластов // 2103498
Состав для блокирования водоносных пластов // 2103499
Изобретение относится к нефтегазодобывающей промышленности, а именно к составам блокирования или ограничения водопритоков в скважины и зон поглощения как в терригенных, так и в карбонатных коллекторах, и для выравнивания профиля приемистости в нагнетательных скважинах
Состав для блокирования водоносных пластов // 2103500
Изобретение относится к нефтегазодобывающей промышленности, а именно, к составам для блокирования или ограничения водопритоков в скважины и зон поглощения как в терригенных, так и в карбонатных коллекторах и для выравнивания профиля приемистости в нагнетательных скважинах
Изобретение относится к области крепления нефтяных и газовых скважин, а именно к получению расширяющихся тампонажных материалов
Способ изоляции зон поглощения // 2106476
Изобретение относится к нефтегазодобывающей промышленности, а именно к области изоляции зон поглощения при бурении скважин