Малогабаритный генератор озона
Изобретение относится к электротехнике, а именно к устройствам для производства малого количества озона из кислорода, воздуха или их смесей с использованием электрического разряда. Генератор озона содержит разрядную камеру 1, диэлектрический барьер 2 с размещенными по обе его стороны разрядным электродом в виде ряда параллельных полос, электрически соединенных друг с другом, и индуцирующим плоским сплошным электродом, устройство ввода-вывода газа, расположенное внутри разрядной камеры 1, теплоотводящий элемент 7 в виде плоскости с рифлением, расположенными параллельно трубкам 5 устройства ввода-вывода газа. Диэлектрический барьер 2 и покрытие разрядного электрода выполнены из керамики на основе глинозема Al2O3 с добавлением оксида марганца MnO. Теплоотводящий элемент 7 расположен на расстоянии в пределах от 3 до 20 мм от поверхности диэлектрического барьера с разрядными электродами. Устройство ввода-вывода газа выполнено в виде трубок 5, имеющих один закрытый конец и ряд отверстий 6, распределенных по их длине внутри камеры. Открытые концы трубок выходят через боковую стену разрядной камеры 1. 2 ил.
Изобретение относится к электротехнике, а именно к устройствам для производства малого количества озона из кислорода, воздуха или их смесей с использованием электрического разряда.
Известен малогабаритный озонатор, содержащий внутренний и наружный электроды, разделенные диэлектрическим барьером, где поверхность одного из электродов снабжена рифлениями [1] Однако этот озонатор не снабжен системой теплоотвода, а в качестве диэлектрического барьера предлагается использовать, например, фарфор. Это делает конструкцию энергоемкой и малопроизводительной. Наиболее близким к предлагаемому по технической сущности является устройство для получения озона [2] которое содержит диэлектрический барьер из керамики с нанесенными на одну или обе его стороны электродами, теплоотводящий элемент и систему ввода-вывода газа. Эта конструкция весьма эффективна, однако, в ней используется керамика на основе чистого Al2O3 (корунда), в результате чего создается менее интенсивный поверхностный разряд, вследствие чего получается меньший выход озона. Система организации потока газа формирует его ламинарным, что увеличивает количество молекул, не прореагировавших в поле разряда с образованием озона; конструкция не оптимизирована для условий работы при разных значениях давления газа, т.е. выбранное расстояние между полосами разрядного электрода обеспечивает эффективную генерацию озона только при одном определенном значении давления газа. Цель изобретения снижение энергопотребления генератора озона и повышение концентрации производимого озона. Цель достигается тем, что в известном генераторе озона, представляющем собой разрядную камеру с устройством ввода-вывода газа, в которой имеется диэлектрический барьер в виде пластины с расположенными по обе стороны разрядным электродом в виде ряда параллельных электропроводных полос, электрически соединенных между собой, и плоским индуцирующим электродом, и теплоотводящий элемент, диэлектрический барьер выполнен из керамики на основе Al2O3 с добавлением MnO; разрядный электрод выполнен с диэлектрическим покрытием из керамики на основе Al2O3 с добавлением MnO; теплоотводящий элемент представляет собой плоскость с рифлением и расположен на расстоянии в пределах от 3 до 20 мм от поверхности диэлектрического барьера с разрядными электродами, причем рифления расположены параллельно трубкам устройства ввода-вывода газа; устройство ввода-вывода газа расположено в разрядной камере и выполнено в виде трубок, имеющих один закрытый конец и ряд отверстий, распределенных по их длине внутри камеры, причем открытые концы трубок выходят через боковую стену разрядной камеры. Выполнение диэлектрического барьера из керамики на основе Al2O3 с добавлением MnO и покрытия разрядного электрода из такой же керамики позволяет существенно повысить эффективность (концентрацию получаемого озона) генератора озона на 20-30% по сравнению с существующими известными генераторами озона при том же энергопотреблении. Выполнение теплоотводящего элемента в виде плоскости с рифлениями, расположенными параллельно трубкам устройства ввода-вывода газа, позволяет создать турбулентный поток газа в рабочей камере. Это обеспечивает равномерное перемешивание потока газа по сечению рабочей камеры и создает благоприятные условия для перемещения молекул кислорода в область плазмы с оптимальными значениями энергий электронов для синтеза озона. Также наличие рифления на теплоотводящем элементе увеличивает общую площадь поверхности элемента, тем самым улучшается отвод тепла, что приводит к повышению эффективности генерации озона за счет снижения скорости обратной реакции. Повышенная эффективность предлагаемого озонатора достигается установлением зазора между разрядным электродом и теплоотводящим элементом рабочей камеры в пределах от 3 до 20 мм. Установление величины зазора между разрядным электродом и теплоотводящим элементом менее 3 мм приведет к тому, что большая часть зазора будет заполнена плазмой, имеющей высокую температуру, что приведет к резкому снижению концентрации получаемого озона за счет увеличения скорости обратной реакции термокаталитического разложения озона. Установление величины зазора между разрядным электродом и теплоотводящим элементом более 20 мм приведет к тому, что увеличивается вероятность прохождения молекул кислорода мимо области плазмы поверхностного разряда с оптимальными значениями энергий электронов для синтеза озона, которая находится вблизи поверхности разрядных электродов. Таким образом, снижается концентрация получаемого озона и увеличивается удельное энергопотребление генератора озона. Выполнение устройства ввода-вывода газа в виде трубок, имеющих один закрытый конец и ряд отверстий, распределенных по длине трубок внутри камеры позволяет достичь равномерного ввода газа в рабочую камеру по ее ширине, в результате чего повысить эффективность использования активной зоны рабочей камеры. Предлагаемая конструкция генератора озона оптимизирована применительно к работе в условиях различных значений давления газа в рабочей камере. Это реализуется путем изготовления разрядного электрода с различными расстояниями между полосами разрядного электрода в зависимости от изменения давления газа, в котором происходит генерация озона. Выбор расстояния между полосами осуществляется в соответствии с формулой lр= l




Формула изобретения
МАЛОГАБАРИТНЫЙ ГЕНЕРАТОР ОЗОНА, содержащий разрядную камеру с устройством ввода-вывода газа, диэлектрический барьер в виде пластины с расположенными по обе стороны разрядным электродом в виде ряда параллельных электропроводных полос, электрически соединенных между собой, и плоским индуцирующим электродом и теплоотводящий элемент, отличающийся тем, что диэлектрический барьер выполнен из керамики на основе глинозема Al2O3 с добавлением оксида марганца MnO, разрядный электрод выполнен с диэлектрическим покрытием из керамики на основе глинозема Al2O3с добавлением оксида марганца MnO, теплопроводящий элемент выполнен в виде плоскости с рифлением и расположен на расстоянии 3 - 20 мм от поверхности диэлектрического барьера с разрядными электродами, причем рифления расположены параллельно трубкам устройства ввода-вывода газа, устройство ввода-вывода газа расположено в разрядной камере и выполнено в виде трубок, имеющих один закрытый конец и ряд отверстий, распределенных по их длине внутри камеры, причем открытые концы трубок выведены через боковую стену разрядной камеры.РИСУНКИ
Рисунок 1, Рисунок 2