Способ поисков скрытого оруденения
Использование: для прогнозирования скрытого оруденения на основе построения эллипсоидальной структурно-геометрической модели рудного поля, содержащей две пары зон содизъюнктивного растяжения и сжатия, перекрестно-симметричных относительно плоскости сместителя магистрального рудоконтролирующего разлома (МРР), которая проходит вдоль длинной оси эллипсоида. Сущность изобретения: МРР и сопряженные с ним разрывные системы скола и отрыва выявляют на основе измерения элементов залегания минерализованных и неминерализованных трещин, разрывов и даек магматических пород. Тип МРР определяют на круговых диаграммах с учетом приуроченности положительных люминометрических аномалий, регистрируемых по способности к послесвечению околорудноизмененных пород, к зонам содизъюнктивного растяжения. Опорный профиль проходят вкрест простирания МРР в направлении к вершине угла встречи указанных систем, дополнительно измеряя элементы залегания трещин и разрывов и определяя способность пород к фосфоресценции. Выделяют положительные и отрицательные люминометрические аномалии. Строят уточненную объемную модель рудного поля с определением эрозионного среза выходящей на поверхность структурно-тектонической ловушки, соответствующей одной рудовмещающей зоне содизъюнктивного растяжения, а также расположения и глубины местонахождения второй, скрытой структурно-тектонической ловушки. 4 ил.
Предлагаемый способ относится к области прогнозирования, поисков и оценки рудных и нерудных жильных или сходных с ними по форме рудных тел месторождений (золота, серебра, урана, вольфрама, олова, полиметаллов, пьезокварца, полудрагоценных и драгоценных камней).
Проблема прогнозирования скрытого оруденения перечисленных видов минерального сырья не утрачивает актуальности ввиду практически полного исчерпания легко открываемых с поверхности запасов. Одним из негативных факторов, препятствующих решению проблемы, является отсутствие универсальной модели структуры рудных полей месторождений. Известен способ прогнозирования тектонической нарушенности угольных пластов [1] который используется для выявления наиболее ослабленных участков шахтных полей, соответствующих так называемым зонам содизъюнктивного растяжения. Способ базируется на структурно-геометрической модели дизъюнктива (разрыва со смещением пород) в форме эллипсоида, разделенного плоскостью сместителя на две равные части, каждая из которых состоит из двух неравных по объему зон содизъюнктивного растяжения и сжатия. В зоне растяжения парагенез (сообщество) нарушений представлен разрывами открытого типа трещины отрыва и сколовые (сбросы) с зиянием, способствующие "разуплотнению" объема, а в зоне сжатия развивается парагенез разрывов закрытого типа сколовых (взбросов) с перекрытием, что приводит к условному уплотнению первоначального объема деформируемых пород. В целом в объеме эллипсоида одноименные зоны располагаются перекрестно-симметрично, поскольку направления перемещения пород в разных крыльях дизъюнктива противоположны. Перемещение пород по плоскости сместителя происходит по направлению его короткой оси. Максимум амплитуды перемещения приурочен к центру эллипсоида, и ограничен эллипсоид изолинией нулевой амплитуды перемещения. Наиболее близким по технической сущности к предлагаемому способу является способ локального прогнозирования скрытого золото-серебряного оруденения на основе структурно-геометрического и люминесцентного анализов [2] В способе-прототипе структурно-геометрическая модель дизъюнктива, разработанная по материалам угольной геологии, использована в области рудной геологии для решения принципиально иной задачи прогнозирования оруденения. На площади известного месторождения или рудопроявления в коренных породах из естественных обнажений или в подземных горных выработках производится определение азимутов и углов падения трещин и разрывов и направления следов скольжения и нанесение их на круговую диаграмму. Направление главного, или магистрального рудоконтролирующего разлома (МРР) соответствует направлению наиболее часто встречающихся трещин и разрывов, которое всегда сопровождается сопряженными системами скола и отрыва. На круговой диаграмме по направлению следов скольжения на плоскости сместителя определяют тип нарушения сброс, сдвиг, взброс или промежуточные между ними. Если МРР представляет собой сдвиг, то обе оруденелые структурно-тектонические ловушки, соответствующие зонам содизъюнктивного растяжения, располагаются приблизительно на одном уровне и выглядят на плане ложносмещенными, так как разнесены на расстояние, соответствующее максимальной амплитуде перемещения. В сечении современного эрозионного среза одна из ловушек может быть перекрыта более молодыми отложениями. В экранирующих породах, как и в рудовмещающих, развиваются системы трещин, по которым отлагаются сопутствующие оруденению минералы; некоторые из них (кальцит, доломит, адуляр, альбит, флюорит) обладают способностью к люминесценции, образуют люминесцентные ореолы и соответствующие им люминометрические аномалии. В способе-прототипе последние определяются по фосфоресценции (послесвечению) под воздействием излучения ртутной кварцевой лампы. Наблюдения производятся через определенные интервалы по опорному профилю, пересекающему оба крыла МРР. Положительная люминометрическая аномалия служит признаком принадлежности к зоне растяжения и наличия под экраном рудных тел на глубине. Способ-прототип относится к частному случаю скрытого оруденения, когда рудные тела древней зоны растяжения залегают под экраном мощностью до 200 м и верхняя граница этой зоны может быть определена уже по развитию экранирующих пород, состав которых отличается от состава пород рудовмещающей толщи. В общем случае одновозрастной толщи большой мощности и однородного литологического состава, например в черносланцевых толщах, прогнозирование скрытого оруденения затруднено неопределенностью положения зоны растяжения, глубина залегания которой не может быть определена по косвенным признакам. Вторым ограничением в способе-прототипе является то, что он относится к одному горизонтальному сечению МРР сдвигового типа, которое соответствует современному эрозионному срезу и является наиболее однозначным для интерпретации, поскольку на этот уровень выведены обе структурно-тектонические ловушки. Более сложными являются случаи, когда МРР представлен сбросом или взбросом, а также промежуточными типами, где ловушки располагаются на разных гипсометрических уровнях. Ставится задача преодоления этих ограничений и прогнозирования скрытого оруденения на глубинах, определяемых размерами эллипсоида нарушенных МРР пород. Для решения этой задачи в способе прогнозирования скрытого оруденения, включающем выявление МРР, выделение люминометрических аномалий на опорном профиле, пересекающем оба крыла МРР, и построение структурно-геометрической модели рудного поля с двумя структурно-тектоническими ловушками в сечении современного эрозионного среза, предлагается проходить опорный профиль вкрест простирания выявленного по данным структурно-геометрических измерений МРР в направлении вершины угла встречи сопряженных разрывных систем скола и отрыва, а положение МРР на местности определять по границе положительной и отрицательной люминометрических аномалий на этом профиле. По полученным данным о взаимном расположении зон содизъюнктивного растяжения и сжатия и о их мощности, определяемой по ширине соответствующих люминометрических аномалий, строят уточненную структурно-геометрическую модель рудного поля месторождения или рудопроявления и делают прогноз скрытого оруденения, локализованного в ниже расположенной из двух структурно-тектонических ловушек. Установлено, что МРР служит непроницаемым барьером между двумя изолированными половинами месторождения. Вблизи него выклиниваются не только все рудные тела вместе с сопутствующими люминесцентными ореолами, но также и дайки магматических пород различного состава, как дорудного, так и пострудного возраста. Таким образом, характер распределения даек является дополнительным признаком при выделении и трассировании МРР. Кроме того, установлено, что отрицательная люминометрическая аномалия, выделяемая на опорном профиле рядом с положительной и соизмеримая с ней по протяженности, соответствует зоне сжатия и граница между люминометрическими аномалиями, приуроченными к разным зонам, соответствует положению МРР. Новые критерии в итоге дают возможность построить необходимую для структурно-геометрического прогнозирования объемную модель и определить характер размещения и контуры обеих структурно-тектонических ловушек. Модель должна быть представлена с точностью, позволяющей найти скрытую ловушку горными работами, поэтому большое значение приобретает и точная привязка МРР на местности. На фиг. 1 изображено горизонтальное сечение (план) эллипсоидальной модели дизъюнктива сдвигового типа, где 1 нарушения сбросовой формы в зоне растяжения, 2 нарушения взбросовой формы в зоне сжатия, 3 полная амплитуда перемещения, 4 маркирующий слой. Модель универсальна и в вертикальном сечении (разрезе) может представлять два других типа сброс и взброс. На круговую диаграмму (фиг. 2) наносятся элементы залегания всех замеренных на исследуемой площади трещин, разрывов и рудных тел, а также даек в изолиниях интенсивности трещиноватости (5) с определением полюсов рудных тел разных этапов (6 и 7), осей напряжений разных этапов тектогенеза (8 и 10) и направления действия оси, обусловившей перемещение крыльев МРР по сместителю (9). На фиг. 3 и 4 в виде блок-диаграмм представлены объемные структурно-геометрические модели взброса (3) и сброса (4), где 11 след сместителя, 12 зоны растяжения, 13 маркирующие слои, 14 направление перемещения. Для осуществления способа необходимо произвести следующие операции. На площади с признаками проявления рудной минерализации измеряют элементы залегания минерализованных и неминерализованных трещин и разрывов, а также направления следов скольжения по ним. По геологической карте или на местности измеряют элементы залегания даек различного состава и возраста. Обрабатывают полученные данные на круговой диаграмме с применением картографических сеток. Отбраковывают системы нормально секущих эндогенных трещин. Отбраковывают системы трещин, принадлежащие новейшим тектоническим нарушениям, смещающим рудные тела и пострудные дайки. На круговой диаграмме выделяют магистральное направление, соответствующее направлению наиболее часто встречающихся трещин и разрывов, и сопряженные с ним разрывные системы скола и отрыва. Корректируют положение МРР по признаку выклинивания у него дорудных и пострудных даек и рудных тел. На круговой диаграмме по направлению следов скольжения на плоскости сместителя определяют тип МРР сдвиг, сброс, взброс или промежуточные между ними. Выбирают направление опорного профиля вкрест простирания МРР в направлении вершины угла встречи сопряженных разрывных систем скола и отрыва. На профиле дополнительно измеряют элементы залегания трещин и разрывов и определяют интервалы с развитием парагенеза растяжения и парагенеза сжатия. Дополнительно через определенные интервалы определяют способность пород к фосфоресценции или отсутствие таковой с выделением соответствующих положительных или отрицательных люминометрических аномалий. Границы зон растяжения и сжатия устанавливают по смене парагенезов разрывов сбросовой и взбросовой форм и по смене знака люминометрических аномалий. Строят уточненную, конкретную, объемную структурно-геометрическую модель рудного поля с учетом найденного положения МРР на местности, его окончания по простиранию в обе стороны по цирковым формам рельефа (для сдвига) и перепаду рельефа в разных крыльях (для сброса и взброса), принимая мощность известной, выходящей на поверхность рудовмещающей зоны растяжения равной ширине положительной люминометрической аномалии в сечении нормальном МРР. По созданной модели определяют уровень эрозионного среза верхней структурно-тектонической ловушки, а также расположение и местонахождение второй, скрытой ловушки. Рассмотрим возможность реализации способа на моделях, представленных на фиг. 1 и 3. Выявление МРР производится следующим образом. Сначала с помощью геологического компаса измеряют элементы залегания трещин и разрывов, а именно азимуты падения и углы падения, по известной методике (Любич Г.А. Мишин Н. И. Методы изучения трещиноватости с целью оценки горно-геологических условий отработки угольных пластов. Л. 1988, с. 10-13, 36-42). Измерению подлежат все возможные, в том числе плохо выраженные и малозаметные, трещины и разрывы, часто минерализованные и, как правило, наиболее древние. Самые четко выраженные и раскрытые системы трещин обычно имеют нетектоническое происхождение и принадлежат эндогенной трещиноватости, нормальной напластованию пород. Хорошо выраженными представляются также современные неотектонические трещины, секущие рудные тела и пострудные образования. При определении взаимоотношений рудных тел и даек следует иметь в виду, что, поскольку последние выполняют структуры отрыва, которые образуются как бы при раздвигании пространства, видимых смещений при этом не наблюдается. Затем результаты измерений наносят на картографическую сетку и строят круговую диаграмму (фиг. 2), на которой отдельными условными знаками и индексами обозначены линии простирания, плоскости, полюса и соответствующие им оси напряжений для всех объектов измерений. На приведенной в качестве примера на фиг. 2 круговой диаграмме, построенной по материалам уникального золото-серебряного месторождения Дукат, изображены изолинии интенсивности трещиноватости, полюса рудных тел I и II этапов и дайковых тел III этапа (индекс IIIо на фиг. 2), а также соответствующие им оси напряжений. Дайки могут быть образованы и в ходе дорудных этапов, в этом случае им соответствуют индексы I и II, а рудному этапу III. Методика построения круговых диаграмм детально рассмотрена в учебном пособии (Мишин Н.И. Структурно-геометрический анализ разрывных нарушений с применением картографических сеток. Л. 1987, с. 42-46). Если на плоскости разрыва наблюдаются следы скольжения, то измеряется угол наклона между линией простирания сместителя и направлением восстания следов скольжения (угол





Формула изобретения
СПОСОБ ПОИСКОВ СКРЫТОГО ОРУДЕНЕНИЯ, включающий измерение элементов залегания трещин, разрывов, даек и направлений перемещений по ним на площади с признаками проявления рудной минерализации, построение по полученным данным круговых диаграмм трещиноватости с помощью картографических сеток со снятием фона неотектонической и эндогенной трещиноватости, определение по ним параметров магистрального разлома, проведение люминометрирования образцов вмещающих пород и суждение по полученным данным о наличии скрытого оруденения, отличающийся тем, что при определении параметров магистрального разлома уточняют его направление по выклиниванию примыкающих к нему даек и минерализованных трещин, а люминометрирование образцов проводят по профилю, расположенному вкрест простирания магистрального разлома в направлении вершины угла встречи сопряженных разрывных систем скола и отрыва, определенного по круговой диаграмме трещиноватости.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4