Использование: для исследования физических свойств горных пород, в частности для определения фильтрационных пористых коллекторов нефти и газа. Сущность изобретения: в образце цилиндрической формы по центральной оси сверлят отверстие длиной 10 - 90% длины образца, торцы образца покрывают флюидонепроницаемым составом, внешнюю поверхность образца приводят в контакт с водным раствором хлорида натрия, внутреннюю поверхность центрального отверстия - в контакт с дистиллированной водой, в воду помещают электрод-анод, в раствор хлорида натрия - электрод-катод, пропускают электрический ток при постоянном напряжении и регистрируют зависимость силы тока от времени до момента стабилизации силы тока, а величину радиальной эффективной проницаемости K рассчитывают по формуле. Причем электроды выполняют цилиндрическими высотой, равной длине центрального отверстия, и располагают их концентрически относительно оси образца. 1 з. п. ф-лы, 1 ил.
Изобретение относится к области исследования физических свойств горных пород, в частности к определению фильтрационных свойств пористых коллекторов нефти и газа, и может быть использовано при разведке и разработке нефтегазовых месторождений.
Известен способ определения эффективной проницаемости коллекторов нефти и газа путем принудительной фильтрации флюида через образец заданной геометрической формы, насыщенный дистиллированной водой, и измерения характеристик процесса фильтрации [1] Недостатками этого способа являются длительность, сложность используемого оборудования и невозможность исследования керна большого диаметра.
Наиболее близким к изобретению является способ определения эффективной проницаемости пористых коллекторов нефти и газа путем принудительной фильтрации флюида через образец заданной геометрической формы, насыщенный дистиллированной водой, и измерения коэффициента открытой пористости и характеристик процесса фильтрации, причем в качестве флюида используют раствор электролита, фильтрацию осуществляют электроосмотически при приложении к электродам постоянного напряжения, регистрируют величину электрического тока до его стабилизации, а величину эффективной проницаемости К рассчитывают по формуле K

Фм
2 (1) где S площадь поперечного сечения образца, м
2; l длина образца, м; K
п коэффициент открытой пористости,

вязкость, Па

с; Т время исследования образца, с; J сила тока, А [2] Недостатком этого способа является невозможность определения радиальной эффективной проницаемости пористых пород коллекторов нефти и газа при моделировании притока в скважину, несовершенную по характеру вскрытия, из-за отсутствия операций по приготовлению образца к исследованиям (сверление образца, изоляция торцов образца) и изготовления специальных электродов.
Заявленный способ позволяет получить новый технический результат определение радиальной эффективной проницаемости при моделировании притока флюида в скважину, несовершенную по характеру вскрытия.
Технический результат достигается тем, что по способу определения эффективной проницаемости коллекторов, включающему принудительную фильтрацию флюида через образец заданной геометрической формы, насыщенный дистиллированной водой, и определение коэффициента открытой пористости, причем в качестве флюида используют раствор электролита, фильтрацию осуществляют электроосмотически при приложении к электродам постоянного напряжения и регистрируют величину электрического тока до момента его стабилизации, по которым определяют эффективную проницаемость с помощью расчетной формулы, согласно изобретению используют образец цилиндрической формы, в котором сверлят по центральной оси отверстие длиной 10-90% длины образца, торцы покрывают флюидонепроницаемым составом, внешнюю поверхность образца приводят в контакт с водным раствором хлорида натрия, внутреннюю поверхность центрального отверстия в контакт с дистиллированной водой, в воду помещают анод, а в раствор хлорида натрия катод, и величину радиальной эффективной проницаемости К рассчитывают по формуле K

Фм
2 (2) где

отношение длины окружности к диаметру,

3,14.
R радиус поперечного сечения образца, м;
r радиус центрального отверстия в образце, м;
h длина центрального отверстия, м;
К
п коэффициент открытой пористости, доли единицы.
Кроме того, электроды выполняют цилиндрическими высотой, равной длине центрального отверстия, и располагают их концентрически относительно центральной оси образца.
Вычисление коэффициента радиальной эффективной проницаемости коллекторов, исходя из предлагаемого способа, основывается на аналогии уравнения Дарси для радиального плоского однофазного течения несжимаемой жидкости в пористой среде с уравнением Гельмгольца-Смолуховского для электроосмоса.
Из анализа уравнений Дарси и Гельмгольца-Смолуховского с применением метода аналогии установлены линейность зависимости объемного расхода жидкости Q от перепада гидравлического давления Р в уравнении фильтрации Дарси:
Q 2


r

h

где r
c радиус скважины, м;
R
к радиус контура питания, м;
r
c < r < R
к;
h толщина пласта, м;
K радиальная проницаемость, мкм
2;

вязкость флюида, Па

с;

Р перепад гидравлического давления, Н/м
2, на расстоянии

r R
к r
c, и линейность зависимости объемного расхода жидкости Q от величины силы тока J. Это является необходимым и достаточным условием для получения адекватного уравнения фильтрации, но записанного в параметрах электроосмотического переноса ионов хлора через цилиндрический образец горной породы большого диаметра с центральным отверстием определенной глубины. Размеры образца горной породы, диаметр и длина центрального отверстия в нем подбираются таким образом, чтобы с максимальным приближением смоделировать отношение толщины продуктивной части пласта, вскрытой в скважине перфорацией, к общей толщине пласта, т. е. учесть реальное несовершенство скважины по степени вскрытия. При этом радиус цилиндрического образца R принимается за радиус контура питания R
к, радиус центрального отверстия в образце r за радиус скважины r
c, длина центрального отверстия h за толщину пласта h, вскрытого в скважине при перфорации, причем отношение h/Н, где Н высота цилиндрического образца большого диаметра, пропорционально отношению h/H, где Н общая толщина пласта в скважине. Приведя в соответствие гидравлическое давление и плотность тока подстановкой в уравнение Дарси вместо Р плотности тока J/S(A/м
2), коэффициент радиальной эффективной проницаемости по предлагаемому способу вычисляется из уравнения (2).
На чертеже изображено устройство для реализации способа определения радиальной эффективной проницаемости пористых коллекторов нефти и газа, где 1 цилиндрический образец горной породы большого диаметра, 2 стеклянный сосуд с раствором хлорида натрия, 3 флюидонепроницаемое покрытие на торцах, 4 электроды, 5 источник постоянного напряжения, 6 амперметр, 7 вольтметр, 8 центральное отверстие в образце определенной длины, заполненное дистиллированной водой.
П р и м е р. Образец пористой породы коллектор большого диаметра (80-90 мм) подготавливают к исследованиям, для чего придают ему форму правильного цилиндра и высверливают в нем по центральной оси отверстие, причем отношение длины отверстия к высоте цилиндра-образца пропорционально отношению толщины продуктивной части пласта, вскрытой в скважине перфорацией, к общей толщине пласта. Замеряют радиусы образца и центрального отверстия соответственно R и r. Затем экстрагируют образец, высушивают до постоянной массы при t 103-105
оС, покрывают торцы образца флюидонепроницаемым составом, высушивают и взвешивают, далее насыщают образец под вакуумом дистиллированной водой и определяют массу насыщенного образца, после чего определяют коэффициент открытой пористости весовым способом. После этого изготавливают цилиндрические электроды, высота которых равна длине центрального отверстия в керне, а радиус одного электрода немного меньше радиуса центрального отверстия, радиус другого электрода несколько больше радиуса образца. Затем приготавливают водный раствор химически чистого хлорида натрия, концентрация которого соответствует минерализации пластовой воды, и заливают этот раствор в стеклянный сосуд, в котором размещают образец таким образом, чтобы уровень раствора хлорида натрия был чуть ниже слоя флюидонепроницаемого состава на верхнем торце образца. В центральное отверстие заливают дистиллированную воду. Далее размещают электроды на одной высоте от дна сосуда в центральном отверстии и вблизи (вокруг) боковой поверхности образца и подключают источник постоянного напряжения так, что положительный электрод оказывается в центральном отверстии, а отрицательный в сосуде с водным раствором хлорида натрия. При наложении постоянного электрического поля производят исследование процесса переноса ионов хлора через образец. В ходе исследования по показаниям амперметра наблюдают за изменением во времени силы тока, протекающего через образец и электроды, относительно начальной силы тока. Исследование считается оконченным, если наблюдается стабилизация силы тока во времени и отмечается при реакции с азотнокислым серебром наличие ионов хлора в центральном отверстии.
В качестве конкретного примера проведено исследование образца цилиндрической формы, изготовленного из песчаника с пористостью K
п 8% Размеры образца R 3,6 см, r 0,65 см, h 2,5 см. Оба цилиндрических электрода изготовлены с высотой цилиндров 2,3 см и радиусами 0,5 см центральный электрод (анод) и 4 см электрод (катод) вокруг боковой поверхности образца. Время исследования образца для стабилизации силы постоянного тока на величине 0,075А составило 22200 с. Тогда величина эффективной проницаемости составила 14

10 м
2, или 14 Фм
2, при несовершенстве скважины по степени вскрытия В, смоделированном на образце, равном 0,43. Значение В определяется из соотношения B h/H, где Н высота образца породы, Н для данного образца равна 5,8 см.
Предлагаемый способ определения радиальной эффективной проницаемости пористых коллекторов нефти и газа позволяет получить информацию об изменении характеристик фильтрации флюида в скважину в зависимости от коэффициента, характеризующего несовершенство скважины по характеру вскрытия, при исследовании кернов (образцов горных пород) большого диаметра. При этом осуществление принудительной фильтрации ионов хлора через боковую поверхность образца в центральное отверстие, т.е. скважину, при изолированных от флюида торцах образца позволяет получить достоверную информацию о характеристиках радиального плоского течения однофазной жидкости из пласта в скважину.
Применение данного способа позволит увеличить степень геологофизической информативности от исследования одного образца.
Формула изобретения
1. СПОСОБ ОПРЕДЕЛЕНИЯ ПРОНИЦАЕМОСТИ ПОРИСТЫХ КОЛЛЕКТОРОВ НЕФТИ И ГАЗА, включающий принудительную фильтрацию флюида через образец заданной геометрической формы, насыщенный дистиллированной водой, и измерение коэффициента открытой пористости, причем в качестве флюида используют раствор электролита, фильтрацию осуществляют электроосмотически при приложении к электродам постоянного напряжения и регистрируют величину электрического тока до момента его стабилизации, по которым определяют эффективную проницаемость с помощью расчетной формулы, отличающийся тем, что используют образец цилиндрической формы, в котором сверлят по центральной оси отверстие длиной 10 - 90% от длины образца, торцы покрывают флюидонепроницаемым составом, внешнюю поверхность образца приводят в контакт с водным раствором хлорида натрия, внутреннюю поверхность центрального отверстия - с дистиллированной водой, в воду помещают анод, а в раствор хлорида натрия - катод, и величину радиальной эффективной проницаемости K рассчитывают по формуле:

где R - радиус поперечного сечения образца, м;
r - радиус центрального отверстия в образце, м;
h - длина центрального отверстия, м;
K
п - коэффициент открытой пористости;

- вязкость, Па

с;
T - время исследования образца, с;
I - сила тока, А.
2. Способ по п. 1, отличающийся тем, что электроды выполняют цилиндрическими, высотой, равной длине центрального отверстия, и располагают их концентрически относительно центральной оси образца.
РИСУНКИ
Рисунок 1