Способ измерения параметров жидких сред по затуханию ультразвука
Изобретение относится к измерительной технике и может найти применение в приборах и системах контроля физико - химических параметров жидких сред. Оно позволяет преодолеть влияние помех и увеличить скорость изменения за счет того, что высокочастотные колебания, проходящие через исследуемую среду, модулируют по амплитуде, а о затухании ультразвука судят по взаимной корреляционной функции между величинами продетектированного сигнала приемного пъезоэлемента и переменной составляющей модулирующего сигнала. 1 ил.
Изобретение относится к измерительной технике и может найти применение в приборах и системах контроля физико-химических параметров жидких сред, например концентрации взвешенных веществ в шахтных и сточных водах. В особенности использование изобретения может оказаться уместным в тех случаях, когда для проведения измерений и обработки результатов предусмотрено применение вычислительной техники.
Известен способ определения наличия в жидкости твердых включений, реализованный в устройстве [1] в соответствии с которым генерируют электрические колебания высокой частоты, возбуждают ими излучающий пьезоэлемент, преобразуя тем самым электрические колебания в ультразвуковые, пропускают последние через исследуемую жидкость, преобразуют их с помощью приемного пьезоэлемента вновь в колебания электрические, которые пропускают последние через фильтр верхних частот, усиливают и детектируют. В этом способе создают условия для модуляции ультразвуковых волн движущимися частицами и измеряют вызванные этой модуляцией изменения напряжения на выходе детектора, по которым судят о величине и концентрации частиц. Однако глубина модуляции, обусловленной движущимися частицами, сравнительно невелика и действие этой полезной модуляции может оказаться соизмеримым с влиянием паразитной модуляции, порожденной, например, нестабильностью амплитуды генерируемых колебаний, которая с не меньшим успехом фиксируется детектором. Наиболее близким по технической сущности и достигаемому результату к заявленному является способ измерения концентрации взвешенных веществ по затуханию ультразвука, реализованный в пульпомере УИКП-1 [2] В соответствии с этим способом генерируют электрические колебания высокой частоты, возбуждают излучающий пьезоэлемент, преобразуя тем самым электрические колебания в ультразвуковые, пропускают последние через исследуемую жидкость, преобразуют их с помощью приемного пьезоэлемента вновь в колебания электрические, усиливают и детектируют (выпрямляют) электрические сигналы приемного пьезоэлемента, а также электрические сигналы, действующие в цепи излучающего пьезоэлемента, после чего определяют разность между величинами продетектированных сигналов, по которой судят о коэффициенте затухания ультразвука, зависящем от концентрации взвешенных частиц. Рассматриваемый способ создает определенные предпосылки для подавления значительной части помех, так как в разности величин сигналов исчезают помехи, носящие аддитивный характер и являющиеся одинаковыми для обоих сравниваемых сигналов. Но это оказывается недостаточными для измерения малых концентраций взвешенных веществ. Действительно, шумы на выходах детекторов коррелированы лишь частично и полностью взаимоуничтожиться не могут. Сам уровень шумов может оказаться значительным за счет его низкочастотных составляющих (фликкер-шумов), спектральная плотность которых с уменьшением частоты все увеличивается. Несколько уменьшить влияние их в рамках данного способа можно путем усреднения сигналов детекторов за довольно значительный промежуток времени. Однако путь этот не дает желаемого результата, поскольку фликкер-шумы не являются стационарными. К тому же увеличение времени измерения нежелательно, либо лишает возможности следить достаточно подробно за изменениями измеряемого параметра и затрудняет использование измерителя в системе автоматического регулирования. Кроме того, в устройствах, реализующих данный способ, неизбежен дрейф нуля усилителей, который можно рассматривать как разновидность низкочастотных шумов. Влияние на результат измерения могут оказать и механические вибрации, поскольку степень воздействия их на каналы усиления не одинакова. Наконец, особенно значительные погрешности обусловлены обычно наводками, порожденными напряжением сети 50 Гц и его гармониками, а также индустриальными помехами от других источников. Действие их на каналы оказывается также неодинаковым. При наличии мешающих факторов дифференциальный способ измерения становится малоэффективным. В самом деле, вклад аддитивных помех в уровень выходного сигнала, частично компенсируясь, хотя и уменьшается, но погрешность, обусловленная этим частично скомпенсированным вкладом, выражается его отношением к разности сравниваемых величин сигналов, которая обычно меньше или гораздо меньше величин ее составляющих, и далеко не всегда дифференциальный способ обеспечивает существенный выигрыш в точности измерений. Во всяком случае, как показывает практика, дифференциальный способ сравнения выпрямленных напряжений не дает желаемого результата при измерениях, требующих высокой чувствительности. Цель изобретения повышение точности измерений за счет уменьшения влияния низкочастотных шумов и наводок, а также увеличение скорости измерений. Цель достигается тем, что в способе, в соответствии с которым генерируют электрические колебания высокой частоты, возбуждают ими излучающий пьезоэлемент, преобразуя тем самым электрические колебания в ультразвуковые, пропускают последние через исследуемую среду, преобразуют их с помощью приемного пьезоэлемента вновь в колебания электрические, усиливают и детектируют электрические, усиливают и детектируют электрические сигналы приемного пьезоэлемента, а также преобразуют сигнал, действующий в цепи излучающего пьезоэлемента, затем сравнивают преобразованные излучаемый и принятый сигналы и по результатам сравнения с учетом эталонных значений судят о коэффициенте затухания ультразвука, зависящем от параметров жидких сред, согласно изобретению, высокочастотные колебания модулируют по амплитуде, а о затухании судят по взаимной корреляционной функции между величинами протедектированного сигнала приемного пьезоэлемента и переменной составляющей модулирующего сигнала. На чертеже изображена структурная схема одного из вариантов устройства, реализующего предложенный способ. Устройство содержит генератор 1 электрических колебаний высокой частоты, формирователь 2 модулирующего сигнала, модулятор 3, ультразвуковую измерительную ячейку 4 с излучающим и приемным пьезопреобразователями 5 и 6, усилитель 7, детектор 8, задерживающее звено 9, подключенное к выходу формирователя модулирующего сигнала. В устройстве предусмотрена также микроЭВМ, реализующая встроенную программу вычисления значений взаимной корреляционной функции между сигналами, снимаемыми с выхода детектора 8 и переменной составляющей сигналов, снимаемых с выхода задерживающего звена 9. Способ реализуется следующим образом. На входы модулятора 3 подают электрические импульсы достаточно высокой частоты (порядка 1 мГц), снимаемые с выхода генератора и модулирующие импульсы, поступающие с выхода формирователя 2 сигнала, частота которых равна, например, 50 кГц. Модулируемые по определенному закону колебания, образующиеся на выходе модулятора 3, подводят к электродам излучающего пьезопреобразователя 5 и возбуждают в нем ультразвуковые модулированные колебания и, если пьезопреобразователь 5 обладает достаточно широкой полосой пропускания с равномерной амплитудно-частотной характеристикой, то сгибающая модулированных колебаний повторяет форму модулирующего сигнала. Проходя через исследуемую среду, ультразвуковые волны, возбуждаемые пьезопреобразователем 5, частично поглощаются, причем степень поглощения зависит от концентрации, например, растворенных солей или взвешенных в жидкости частиц, а также от частоты ультразвуковых колебаний. Но так как между несущей частотой колебаний и частотой модулирующего сигнала имеет место соотношение





















U(t) модулирующий сигнал;
t время;












К3 коэффициент, зависящий от параметров детектора;





R






Uср среднее значение величины U(t), определяемое как
Uср=





















После подстановки выражения (8) в соотношение (7) последнее приобретает следующий вид:
R K4e













Так как помехи









































R K4e















R A





ln R ln A


В рамках предложенного способа осуществляют также сравнение коэффициента затухания

ln Rэ ln A




ln




Формула изобретения
РИСУНКИ
Рисунок 1