Способ гаспака проведения непрерывного тепломассообменного процесса
Изобретение относится к способам проведения тепломассообменных, гидромеханических и химических процесов между твердыми дисперсиями и дисперсионными средами в химической, фармацевтической и пищевой отраслях промышленности и позволяет повысить эффективность процесса тепломассообмена за счет пульсационного технологического транспортирования твердой дисперсии с использованием свойств гранулированных сред. Способ включает подачу жидкой и твердой дисперсии в рабочую зону до ее заполнения и в противотоке, создание в рабочей зоне импульсного давления и отвод жидкой среды и твердой дисперсии, причем имульсное давление используют для продвижения смеси твердой дисперсии и жидкой среды и отвода твердой дисперсии, а отвод жидкой среды осуществляют при отсутствии импульса давления. 1 ил.
Изобретение относится к способам проведения тепломассообменных, гидромеханических и химических процессов между твердыми дисперсиями (минерального, растительного, животного и химического происхождения) и дисперсионными средами в химической, фармацевтической и пищевой отраслях промышленности.
Известен способ выщелачивания растворимых минералов из полиминеральных руд, включающий непрерывное противоточное контактирование движущегося под действием силы тяжести слоя твердой дисперсии (руды) с раствором, подаваемого со скоростью 0,8-0,98 критической скорости псевдоожижения насыпного слоя при отношениях объемных расходов руды и раствора, равных 0,58-0,62. Раствор подается непрерывно или в пульсационном режиме. К недостаткам такого способа проведения тепломассообменых процессов относятся: узкий диапазон изменения и связанность технологических скоростей, контактирующих потоков при высокой порозности слоя твердой дисперсии и интенсивном перемешивании, это обусловлено гидродинамикой процесса псевдоожижения и ограничивает технико-экономические показатели процесса; неэффективность использования пульсаций дисперсионной среды только для снижения неоднородности потоков. Известен также способ контактирования дисперсионной жидкой среды и твердой дисперсии, включающий чередование процесса фильтрации через неподвижный слой твердой дисперсии в различных направлениях исходного и регенерирующего растворов с периодическим транспортированием сорбента (твердая дисперсия) путем наложения пульсаций на технологический поток дисперсионной среды. К недостаткам данного способа относятся: разнесенность во времени массообменных процессов с пульсационным транспортированием сорбента; невысокая скорость тепломассопереноса в условиях фильтрации дисперсионных сред через неподвижный слой сорбента. Цель изобретения повышение эффективности процессов теплоомассообмена в концентрированных дисперсионных средах за счет пульсационного технологического транспортирования твердой дисперсии с использованием свойств гранулированных сред. При достаточно высокой концентрации твердых частиц, когда последние практически непосредственно контактируют между собой, смесь приобретает следующие характерные свойства гранулированной среды: начинает двигаться лишь под нагрузкой, превышающей ее предельное равновесное значение (предельная нагрузка); при движении среды в каналах из-за дилатансии сдвиг сопровождается "дисперсионным" давлением частиц на стенку (нормальные напряжения), причем касательное и нормальное напряжения на ней связаны законом сухого трения Кулона; течение дисперсии в канале близко к поршневому, за исключением пристенных зон сдвига с шириной порядка 5 диаметров частиц (локализация сдвига). Существование у дисперсии предельного состояния равновесия позволяет организовать однонаправленное (в среднем) перемещение частиц, воздействуя периодически на дисперсионную среду асимметричными разнонаправленными импульсами давления. Прямой импульс преодолевает трение покоя, приводит гранулированную среду в движение, которое сопровождается хаотическими колебаниями частиц, что способствует наиболее полному использованию их поверхности при тепломассообмене. Обратный импульс подбирается так, чтобы твердая дисперсия оставалась неподвижной, и обеспечивает возврат дисперсионной среды в исходное положение путем ее фильтрации через неподвижный слой. Таким образом, прямой импульс давления является транспортирующим для твердой дисперсии и одновременно интенсифицирующим для тепломассообменных процессов. На эти импульсы накладывается постоянный поток дисперсионной среды, расход которой, а также длительность и амплитуда прямого импульса (расход твердой дисперсии), согласованы со скоростью массообмена. Среднюю скорость перемещения дисперсии можно оценить путем осреднения уравнения движения смеси в целом за время действия прямого импульса. Продолжительность обратного импульса находится из уравнений фильтрации. На чертеже представлен аппарат с рабочей зоной в виде U-образного канала с равновеликим сечением, предназначенным для реализации способа. Канал 1 аппарата содержит патрубки 2 и 3 для подвода и эвакуации твердой дисперсии, патрубки 4 и 5 для подвода и эвакуации дисперсионной среды, патрубок 6 для подачи и сброса внешнего импульса. Веpхняя часть левого колена от уровня твердой дисперсии образует пульсационную камеру 7. Предлагаемый способ проведения процесса реализуется в U-образном аппарате следующим образом. Через патрубки 4 и 5 устанавливается расход дисперсионной среды. Твердая дисперсия подается непрерывно через патрубок 2. Подача и эвакуация фаз происходит при непрерывном подводе через патрубки 6, расчетных по величине, характеру изменений и продолжительности импульсов. Твердая дисперсия по мере поступления в левое колено образует в нем насыпной слой, который под периодическим воздействием прямых импульсов на дисперсионную среду перемещается в правое колено. Во время обратных импульсов происходит фильтрация дисперсионной среды через неподвижный слой твердой дисперсии. Слой твердой дисперсии поддерживается в состоянии равновесия силами кулоновского трения. В течение всего периода происходит перемещение твердой дисперсии к патрубку 3 для ее эвакуации из аппарата со скоростью, определяемой прямым импульсом и структурно-механическими свойствами рабочей среды. При достижении твердой дисперсии уровня дисперсионной среды в правом колене, она эвакуируется из аппарата в виде структурированного плотного слоя с более низкой, чем у насыпного слоя, порозностью. Лабораторные эксперименты показывают, что скорость жидкости и твердых частиц во время действия прямого импульса отличаются незначительно, то дает возможность оценить среднюю скорость перемещения дисперсии из уравнения импульсов, примененного ко всему рабочему объему гранулированной среды в целом. В направлении движения на этот объем действуют давление, приложенное к поперечному сечению канала, трение на его стенке и силы тяжести. Поскольку в начале и в конце прямого импульса давление среды находится в покое, то полный импульс всех указанных сил будет равен нулю. Отсюда после некоторых упрощений следует равенство <



















k(d) проницаемость дисперсной среды определяемая, например, известной формулой Козени. В рассматриваемых условиях продолжительность обратного импульса Тобр можно принять равным (1-2)



Формула изобретения
РИСУНКИ
Рисунок 1