Способ подземного выщелачивания золотосодержащих руд
Способ подземного выщелачивания золотосодержащих руд включает закачивание выщелачивающего раствора через попарно расположенные нагнетательные скважины, при этом одну из нагнетательных скважин каждой пары располагают в пределах массива руды и размещают в ней положительный электрод, а другую во вмещающих породах и размещают в ней отрицательный электрод, а в качестве выщелачивающего раствора закачивают раствор поваренной соли. Расстояние между нагнетательными скважинами определяют из математического выражения. После завершения выщелачивания раствор откачивают из нагнетательных скважин и закачивают его в откачные скважины. 2 з. п. ф-лы, 3 ил.
Изобретение относится к горному делу и может быть использовано при добыче золота способом подземного выщелачивания (ПВ).
Известные в настоящее время способы выщелачивания золотосодержащих руд, основной операцией которых является непосредственное использование реагентов и их композиций с высокими окислительными свойствами для выщелачивания золота, не обеспечивают технологичности процесса, являются дорогостоящими и экологически ущербными. Известен способ подземного выщелачивания золотосодержащих руд, включающий закачивание выщелачивающих реагентов в массив руды и откачивание продуктивных растворов с их последующей переработкой [1] В качестве реагентов, способных переводить золото в раствор, применяются: цианид натрия (NaCH), царская водка (1 объем HNO3 + 3-4 объема HCl), гипохлорид натрия (NaClO), хлорноватистая кислота (HClO) и ряд других соединений с активным хлором. В общем случае необходима смесь сильной кислоты и окислителя. При непосредственном использовании данных реагентов в скважинной технологии ПВ можно выделить ряд недостатков. Цианид натрия и другие цианиды (соли синильной кислоты) используются (в присутствии кислорода воздуха) для избирательного перевода золота в раствор на золотодобывающих фабриках, где рудная масса предварительно измельчается. В естественном залегании руды, как правило, не являются в должной степени измельченными и аэрированными, поэтому контактирование золотоносных пород с цианидами может привести к существенному недоизвлечению и, следовательно, являются малоэффективными. Помимо этого растекание цианидов в недрах может создать серьезные экологические проблемы, так как соли синильной кислоты являются ядовитыми. Царская водка является химически активным соединением и реагирует практически со всеми минералами вмещающих пород, что может привести к непроизводительным его расходам. Помимо этого, учитывая агрессивность царской водки, возникает проблема ее хранения и создания нестандартной антикоррозионной обвязки и оборудования для транспорта технологических растворов, что делает процесс выщелачивания нетехнологичным и дорогостоящим. Прямое использование гипохлоритов и других реагентов с активным хлором также связано с проблемой обвязки поверхностного комплекса (хранение, транспортировка и т.д.). Помимо этого выход в раствоp непосредственно в недрах обширного комплекса химических компонентов, включая тяжелые металлы, может создавать существенные экологические проблемы. Для интенсификации процесса выщелачивания золотосодержащих руд является возможным электрическое воздействие, применяемое при выщелачивании меди, сульфидных руд металлов. Известен способ подземного выщелачивания руд, включающий подачу выщелачивающего реагента, подачу постоянного тока с помощью электродов на выщелачиваемый объем руды, сбор продуктивных растворов, где для интенсификации процесса выщелачивания дополнительно подают высокочастотный ток [2] При этом улучшаются фильтрационные характеристики пород и повышается окислительная способность выщелачивающего реагента. Однако с увеличением окислительной способности теряется селективность выщелачивающего раствора за счет выхода в раствор сопутствующих компонентов, не всегда являющихся предметом добычи. Помимо этого проблемы обвязки поверхностного комплекса и экологические проблемы, обусловленные миграцией продуктов выщелачивания в недрах, остаются нерешенными, так как в качестве выщелачивающих используются описанные выше реагенты. Цель изобретения -разработка способа подземного выщелачивания золотосодержащих руд посредством использования дешевого и технологичного, первоначально малохимически активного реагента, который под действием постоянного электрического тока непосредственно в недрах преобразуется в реагент для выщелачивания золота и нейтрализующий реагент, что позволило бы отказаться от дорогостоящей антикоррозионной обвязки и оборудования, обеспечить циркуляцию выщелачивающего реагента и интенсивность выщелачивания золота в пределах рудного массива и снизить экологическую ущербность процесса выщелачивания. Цель достигается тем, что предлагается способ подземного выщелачивания золотосодержащих руд, включающий закачивание выщелачивающего раствора в рудный массив, воздействие на выщелачивающий массив руды постоянным током с помощью размещенных в нем электродов и откачивание продуктивных растворов, в котором выщелачивающий раствор закачивают через попарно расположенные нагнетательные скважины, при этом одну из нагнетательных скважин каждой пары располагают в пределах массива руды и размещают в ней положительный электрод-анод, а другую во вмещающих породах и размещают в ней отрицательный электрод-катод, а в качестве выщелачивающего раствора закачивают раствор поваренной соли (хлористого натрия). Предлагаемый способ позволяет получать высокоактивный хлорсодержащий выщелачивающий реагент (HCl + HClO + Cl2 + остаточный NaCl) непосредственно в недрах, в рудном масссиве, а не на поверхности. Способ отличается технологичностью, прост в исполнении и не требует сложной поверхностной антикоррозионной обвязки. Способ позволяет также за счет гидродинамического потока, формируемого каждой парой нагнетательных скважин, обеспечивать преимущественную циркуляцию выщелачивающего раствора в рудном золотосодержащем массиве и формировать на периферии массива и во вмещающих породах щелочной нейтрализующий раствор (NaOH), который после осуществления выщелачивания используется для рекультивации недр. Формирование выщелачивающего реагента в недрах протекает следующим образом. При подаче в каждую пару скважин раствора NaCl на аноде выделяется свободный хлор (Cl2), образующий при смешении с водой раствор соляной (HCl), хлорноватистой (HClO) кислоты, а на катоде натрий (Na), причем натрий при контакте с водой образует сильное основание (NaОH) с выделением водорода (Н2). Раствор с NaОH и H2 благодаря создаваемому гидродинамическому потоку отводится за периферию рудного массива, а сформированный хлорсодержащий раствор расходуется на выщелачивание перемещаясь от закачных к откачным скважинам. Расстояние между нагнетательными скважинами в паре целесообразно выбирать исходя из условия: 0<l<








S площадь поверхности электрода, см2, равная lэ х dэ, где
lэ длина электрода, dэ диаметр электрода, см;
n пористость вмещающих пород. l




Выражение (4) есть правая часть выражения (1), из которого следует, что, если нагнетательные скважины в каждой паре располагать на большем расстоянии одна от другой, то процесс электролиза может прекратиться в связи с чрезмерным увеличением сопротивления среды. Наименьшее расстояние между скважинами, как правило, ограничено геолого-гидрогеологическими и технологическими свойствами вмещающих пород, в частности, величиной отклонения забоев нагнетательных скважин. При чрезмерном сближении скважин в паре, при котором они частично или, в крайнем случае, совпадают, происходит сечение продуктов электролиза и основным выщелачивающим реагентом становится щелочной гипохлорит натрия (NaClO), эффективность которого меньше, чем смеси HCl + HClO + NaCl за счет меньшего окислительно-восстановительного потенциала. Близкое размещение пары электродов и проведение электролиза не дает в последующем возможности для рекультивации недр посредством самонейтрализации остаточных растворов, так как нейтрализующий реагент при смешении с продуктами электролиза расходуется в стадии выщелачивания и не формируется на периферии рудного массива. Желательно после завершения выщелачивания через нагнетательные скважины произвести откачку растворов с последующей закачкой в откачные скважины. В этом случае растворы, формируемые на перифеpии блока и являющиеся щелочными (рН > 7), используются для рекультивации недр при смешении с кислыми хлорсодержащими растворами (рН < 7), что приводит к нейтрализации раствора (рН 7) и выпадению в осадок тяжелых и большинст- ва других металлов Me(OH)





Vпор поровый объем отрабатываемого рудного тела, м3;
L длина рудного тела, м;
а ширина рудного тела, м;
m мощность рудного тела, м;
n пористость;


После достижения проектной величины извлечения (завершения собственно отработки залежи) снимаются оголовники 5 скважин 2 и 3, из которых изымаются электроды 7 и 8. Затем скважины 4 перевязываются для закачки растворов, а скважины 2, 3 для откачки. Данная переобвязка необходима для последующей рекультивации недр. После переобвязки из скважин 2, 3 начинает осуществляться откачка растворов, которые подаются в скважины 4, что в конечном итоге приводит к общей нейтрализации подземных вод (рН__



Общее время рекультивации Тр составит Tр



Формула изобретения

где

F число Фарадея;
U величина подаваемого на электроды напряжения;

lэ длина электрода;
dэ диаметр электрода;
n пористость вмещающих пород;
t время осуществления электролиза. 3. Способ по п.1, отличающийся тем, что после завершения выщелачивания через нагнетательные скважины производят откачку растворов, которые закачивают в откачные скважины.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3