Паводковый водосброс для плотин
Сущность изобретения: с целью почти постоянного подъема нормального рабочего уровня водохранилища и следовательно увеличения его аккумулирующей способности, за исключением случаев прохождения катастрофических паводков, предусматривается размещение на гребне водосброса 5 элемента 10, образованного по меньшей мере, одним цельным блоком 11, причем блоки 11 могут выдерживать, не разрушаясь, давление воды, соответствующее умеренному водосбросу, сопротивляясь посредством действия силы тяжести, и распадаясь путем опрокидывания при заданном давлении воды, соответствующем уровню (N1 N2), самое большое равном максимальному уровню (RM), и обеспечивают при этом прохождение наиболее сильных паводков. 11 з. п. ф-лы, 15 ил.
Изобретение касается паводкового водосброса для плотин.
Современное состояние практики проектирования и строительства водосливных плотин приводит к определению размеров таких объектов для условий паводков (например, 0,1% обеспеченности), требующих больших значений высот, переливающегося слоя воды (порядка 1-5 м в зависимости от объектов). При равном размере паводковых сбросных устройств плотина со свободным порогом водослива представляет по сравнению с сооружением, оборудованным затворами, большую безопасность относительно гидрологической опасности, которая остается одним из главных рисков для плотин. Напротив, принятие полностью свободного порога водослива приводит к потере полезной части подпорного слоя, соответствующего максимальной высоте слоя переливающегося. Эта потеря может представлять, в частности, для сооружений малых и средних размеров значительную часть полезного объема подпорного горизонта (эта часть может достигать или превышать 50%). Известны устройства для увеличения аккумулирующей способности водохранилища. Большей частью эти устройства главным образом образованы системами затворов, закрывающих порог водослива. Затворы независимо от типа, обычные или надувные, автоматические или ручные, обычно требуют довольно больших капиталовложений и периодического ремонта и маневрирования. Кроме того, они требуют постоянного контроля со стороны оператора или сервомеханизма, реагирующего на уровень воды в водохранилище, механизма который часто является дорогостоящим и сложным и не может быть полностью огражден от поломки. Наконец, при равной пропускной способности безопасность эксплуатации и надежность сооружения, оснащенного затворами, ниже, чем у сооружения со свободным порогом водослива (не оснащенного затворами). Известны устройства, позволяющие временно увеличивать аккумулирующую способность водохранилища, такие как мешки с песком или перемычки. Эти устройства остаются устройствами ограниченного применения и, поскольку требуют предварительного вмешательства человека при каждом паводке, представляют большую опасность в работе. Существует также на некоторых крупных земляных плотинах участок перемычки, срезанный на отметке, ниже отметки остальной части сооружения, и действующий по принципу размыва образующих ее материалов, размыва, порождаемого чрезвычайным подъемом уровня воды при катастрофическом паводке. Цель изобретения почти постоянно увеличивать аккумулирующую способность плотины со свободным порогом водослива; поддерживать или увеличивать безопасность работы, свойственную сооружениям с порогами водослива, надежно обеспечивая прохождение катастрофических паводков, допуская при этом слив малых или средних паводков без вмешательства извне и без фундаментальных изменений сооружения. На фиг.1 представлено сооружение и его паводковый водосброс со свободным порогом водослива; на фиг.2 вертикальный разрез в увеличенном масштабе гребня свободного порога водослива плотины для двух различных уровней воды; на фиг. 3 водослив с низкой стороны, оборудованный перегораживающим элементом, вид спереди; на фиг.4 водоснабжение, вид в плане; на фиг.5 виды в вертикальном разрезе, позволяющие объяснить работу перегораживающего элемента в период и после прохождения паводка; на фиг.6 график, показывающий различные силы, которые при работе могут быть приложены к перегораживающему элементу; на фиг. 7 график, представляющий изменения моментов движущих сил и сил сопротивления в зависимости от высоты воды над порогом водослива, а также изменения сбрасываемого расхода воды в зависимости от высоты переливающегося слоя воды; на фиг.8 поперечные разрезы, позволяющие сравнивать максимальные значения высоты переливающихся слоев воды для перегораживающих элементов, имеющих различные высоты (а и b), и в случае свободного порога водослива (с); на фиг. 9 вертикальный разрез, показывающий перегораживающий элемент с устройством для его опрокидывания; на фиг.10 различные предохранительные устройства, которые могут быть предусмотрены на верхнем конце устройства для включения опрокидывания; на фиг.11 в общем виде различные формы выполнения перегораживающего элемента; на фиг.12-14 в вертикальном разрезе различные варианты перегораживающего элемента, накладки; на фиг.15 в общем виде деталь перегораживающего элемента. Сооружение 1 (фиг.1) может быть насыпной плотиной, бетонной или каменной. Следует отметить, что изобретение может применяться к любому известному типу плотины со свободным порогом водослива. На фиг.1 приняты следующие обозначения: 2 гребень плотины, 3 ее низовой откос, 4 ее верховой откос, 5 паводковый водорсброс, 6 гребень водослива 5, 7 отводящий канал. Водосброс 5 может быть размещен в центральной части плотины 1 и на конце ее или же вырыт на берегу без ущерба для возможного применения изобретения. Для сооружения со свободным порогом водослива уровень RN нормального уровня воды при эксплуатации (фиг.2,а) является уровнем гребня 8 порога водослива 6. Этот уровень RN определяет максимальный объем водохранилища, который может быть сохранен емкостью, образованной плотиной. Вертикальное расстояние R, называемое запасом, между гребнем 8 водослива и гребнем 2 плотины равно сумме двух рядов слоев, а именно повышения h1, уровня воды из-за паводка до максимального уровня RM или уровня высоких вод (РНЕ), обеспечивающее сброс максимального паводка (фиг.2,b), на который рассчитано сооружение, с другой стороны, избыточной высоты h2, предназначенной для защиты гребня 2 плотины от колебаний поверхности воды на ее максимальном уровне RM (воздействие ветра, волн и т.д.). На обычной плотине со свободным гребнем водослива, как плотина (фиг.1), объем водохранилища, расположенный между нормальным уровнем воды RN и максимальным уровнем RM, не накапливается и следовательно теряется при эксплуатации. Одной из целей изобретения является обеспечение почти постоянного подъема нормального рабочего подпорного уровня водохранилища и следовательно увеличение его аккумулирующей способности, за исключением при прохождении катастрофических паводков. С этой целью изобретение предусматривает размещать на гребне 6 водослива перегораживающий элемент 10, образованный по меньшей мере одним цельным блоком 11, например пятью блоками 11а-11е (фиг.3 и 4), причем элемент 10, не разрушаясь, способен выдерживать напор воды, соответствующий умеренному сбросу, обеспечивающему прохождение наиболее часто наблюдаемых паводков, сопротивляясь благодаря действию силы тяжести, и разрушаясь путем опрокидывания при заданном напоре воды, соответствующем уровню N, самое большее равному максимальному уровню RM и позволяющему таким образом прохождению самых сильных паводков. Естественно, число блоков 11 не ограничено пятью элементами (фиг.3 и 4), а может быть больше или меньше в зависимости от длины водосброса 5, измеряемой вдоль плотины. Предпочтительно, число блоков 11 выбирается так, чтобы получить небольшие единичные массы, обеспечивающие удобное их размещение и замещение. Каждый блок 11 укладывается на гребне водослива 6 и удерживается на нем под действием силы тяжести от любого скольжения к низовому откосу с помощью анкерной стенки 12, расположенной в основании блока 11. Анкерная стенка 12 может быть, например, встроена в гребень 6 (фиг.5,а), может быть как несплошной (фиг. 3 и 4), так и сплошной. Высота анкерной стенки 12 задается, но может изменяться в зависимости от прилагаемых усилий и уровня воды, начиная с которого хотят вызвать опрокидывание каждого блока 11. Обычное герметичное уплотнение 13 (фиг.4), например из резины, предусматривается на каждом из двух концов элемента 10 между боковыми сторонами 14 водосброса 5. Когда блок 11 образован несколькими элементами, герметичные уплотнения 13 также предусматриваются между вертикальными боковыми стенками смежных блоков 11, попарно друг против друга (фиг.4). Предпочтительно, если герметичное уплотнение 15 предусматривается также между гребнем 6 водослива и основанием блоков 11 около верхового края 16 названного основания (фиг.4 и 5,а). Уплотнение 15 (фиг.5,с), опирающееся на блок 11, могло быть также установлено в пазу, устроенном на гребне водослива 6. Уплотнения 13 и 15 (фиг. 4) располагаются в одной и той же вертикальной плоскости. Вместо предусмотренного уплотнения 15 может быть устроена известным способом дренажная система в гребне 6 водослива в подстилающей к элементу 10 зоне для осушения этой зоны и предотвращения того, чтобы при нормальной работе противодавление не прикладывалось бы к блокам 11. Элемент 10 (фиг.5,а) позволяет поднять нормальный уровень воды с уровня RN (нормальный уровень воды свободного гребня 6 водослива, т.е. без элемента 10) до уровня RN', соответствующего высоте элемента 10 над гребнем 6. Размер каждого блока 11 рассчитывается таким образом, чтобы он был устойчивым для напора воды ниже заданного уровня N, который самое большее равен максимальному уровню RM. Таким образом, предполагая, что указанный заданный уровень равен уровню RM, пока уровень воды считается ниже уровня RM для малых или средних паводков и заключен между уровнями RN' и RM, вода сбрасывается через элемент 10 (фиг.5,а) без его разрушения. В этом случае после сброса паводка уровень воды падает до уровня RN' или до уровня более низкого, если вода переливается в водохранилище. Напротив, если уровень воды достигает заданный уровень N, равный или несколько ниже максимального уровня RM в случае сильного или катастрофического паводка, по меньшей мере один блок 11 элемента 10 выводится из равновесия под действием давления воды и опрокидывается вокруг анкерной стенки 12 (фиг. 5,с), а опрокидывающиеся блок или блоки 11 смываются водой паводка, по меньшей мере, до основания водосброа 5, позволяя таким образом сбрасывать наиболее сильные паводки. После сброса сильного паводка, вызвавшего опрокидывание элемента 10, гребень водослива 6 оказывается вновь в состоянии, показанном на фиг.5,d, причем уровень воды возвращается к нормальному уровню воды RN или к еще более низкому уровню. Возможно также предусмотреть несколько запасных блоков 11, постоянно имеющихся на месте плотины, для обеспечения его ремонта в случае необходимости и восстановления таким образом нормального уровня воды на уровень RN' (фиг.5,е). Следует отметить, что незамена одного или нескольких блоков 11 после катастрофического паводка, вызвавшего опрокидывание, по меньшей мере одного блока 11, не снижает надежности работы сооружения. Опасность неудовлетворительной работы из-за плавающих предметов может быть легко устранена защитной верховой стороны по обычным способам, применяемым в каждом отдельном случае. Защита может быть, например, образована плавающими линиями на водохранилище на некотором расстоянии вверх по течению от сброса или стопорными устройствами, закрепленными на верховой грани плотины. Ниже приведен цифровой пример расчета размера разрушаемой накладки в соответствии с изобретением. Обычно плотины и пороги водослива рассчитываются по размеру для того, чтобы уровень озера (уровень воды в водохранилище) достигал максимального уровня RM для рассматриваемого катастрофического паводка (проектный паводок). Этот паводок может быть, например, паводком, происходящим один год из тысячи (паводок 0,1% обеспеченности). Предположим, что расход этого проектного паводка 200 м3/с и что свободный гребень 6 водослива имеет длину 40 м. В этих условиях высота гребня 6 это слой воды, необходимый для сброса расхода проектного паводка, соответствующий 5 м3/с на погонный метр порога. Высота Н может быть рассчитана по следующей формуле: Q 1,8 H3/2, (1) из которой можно видеть, что Н почти равна 2 м по допущенной выше гипотезе. В этой гипотезе всегда при отсутствии затворов или перегораживающих элементов уровень гребня 6 водосброса 5 срезается по отметке 2 м ниже максимального уровня RM для обеспечения сброса паводка 0,1% обеспеченности, и следовательно теряются полезный объем воды, соответствующий слою 2 м. Для определения высоты блоков 11 изобретение основывается на констатации того факта, что максимальный расход, достигаемый в среднем за 20 лет, более низкий, чем проектный паводок, и может быть около 50 м3/с (для данного примера). По формуле (1) этот расход соответствует при этом слое воды высоте около 0,8 м. Если допустить, что блоки 11 могут быть разрушены в среднем каждые 20 лет, можно тогда придать им высоту 2 м 0,8 м 1,2 м, обеспечивающую таким образом прохождение над блоками 11 слоя высотой 0,8 м, соответствующей расходу 50 м3/с. В этом случае нормальный уровень воды RN' повышается на 1,20 м над нормальным уровнем воды RN свободного гребня 6 водослива, т.е. без блоков 11. Если выбирают блоки 11, имеющие высоту более 1,2 м, высота допустимого слоя воды будет ниже 0,8 м и нужно будет допустить разрушение перегораживающих элементов, например, каждые 10 лет. Нормальный уровень воды в этом случае будет еще увеличен. Напротив, если выбирают блоки 11, имеющие высоту меньше 1,2 м, можно будет допустить слой воды высотой большей 0,8 м, причем блоки 11 разрушаются лишь каждые 50 или 100 лет, а нормальный уровень воды при этом будет ниже, чем в предыдущих случаях. Выбор высоты блоков 11 является главным образом экономическим выбором. Желательно установить временной интервал между двумя последовательными полными разрушающимися элементами 10 в 20 лет, что привело бы к теоретической высоте блоков 11 равной 1,2 м для данного примера. Важно, чтобы разpушение всех блоков 11 не происходило бы точно при одном и том же уровне воды. Можно предусмотреть, например, чтобы один блок, такой как блок 11с (фиг.3 и 4) разрушался бы, когда вода достигает первого уровня N1, расположенного приблизительно на 10 см ниже максимального уровня RM, чтобы, по меньшей мере, другие блоки 11, такие как 11b и 11d, разрушались бы, когда вода достигнет второго уровня N2, расположенного приблизительно на 5 см ниже максимального уровня RM, и другие блоки 11, такие как 11а и 11е, разрушались бы когда вода достигнет максимального уровня RM. Таким образом, разрушение первого блока 11 с средним паводком может оказаться достаточным для сброса паводка без дополнительного подъема уровня воды, что предотвращает разрушение других блоков 11а, 11b, 11d и 11е. Однако, запас в 10 см, который таким образом забирается, добавляется к высоте максимально допустимого переливающегося слоя воды, так что высота элементов 10 и следовательно выигранный слой воды (RN' RN) становится равным 1,1 м (2 м 0,8 м 0,1 м) в рассматриваемом здесь примере. Опрокидывание блока или блоков 11, а следовательно их разрушение, зависит от равновесия между, с одной стороны, движущим моментом, т.е. моментом сил, которые стремятся опрокинуть рассматриваемый блок, а с другой стороны, моментом сопротивления, т. е. моментом сил, стремящихся стабилизировать указанный блок. Если не предусмотреть включающего устройства, непосредственно связанного с уровнем воды, для включения опрокидывания блока 11 с точностью при заданном уровне воды, высота воды, соответствующая указанному равновесию, может быть установлена с погрешностью, которая может достигать 0,2 м. В этих условиях необходимо для надежности сократить высоту блока или блоков 11 на величину, соответствующую этой погрешности, например 0,2 м. Можно избежать необходимость сокращения высоты блоков 11, предусматривая включающее устройство. Для расхода 50 м3/с, рассматриваемого в примерe, возможно сократить высоту максимально допустимого переливающегося слоя воды перед опрокидыванием блоков 11, по меньше мере, на 0,8 м, делая так, чтобы линия гребня блоков 11, рассматриваемых отдельно или вместе, располагались бы уже не параллельно гребню 6 порога водослива, а по непрямой линии, например ломаной или кривой линии, для увеличения длины водосборного фронта указанного расхода. Если эту длину удваивают, то расход 50 м3/с при этом распределяется на 80 м вместо 40 м, а высота соответствующего максимально допустимого слоя воды доводится с 0,8 м до 0,5 м. Это позволяет при прочных равных условиях поднять на 0,3 м высоту блоков 11 и увеличить в связи с этим объем воды, накопленной в водохранилище. Различные формы блоков 11, позволяющие увеличивать длину водосборного фронта, будут описаны ниже (фиг.11,е-g). На фиг.6 показаны различные силы, которые в процессе работы могут прикладываться к одному элементу 11. Предположим, что блок 11 имеет форму параллелепипеда, а также ширину L и высоту Н1. На фиг.6 обозначено: RM максимальный уровень, В высота анкерной стенки 12 над гребнем 6, Н2 высота максимально допустимого переливающегося слоя воды над блоком 11, Z уровень воды. Движущие силы, стремящиеся опрокинуть блок 11 это давление Р воды на верховой стороне блока 11 и противодавление, которое возможно действует на опорную поверхность названного блока и которое вызвано существованием возможных утечек в герметичных уплотнениях или присутствием включающего устройства. Силы сопротивления, стремящиеся стабилизировать блок 11 сумма W собственного веса блока 11 и веса водяного столба, возможно присутствующего над данным блоком 11. Для расчета значений P,V и W, а также значений соответствующих движущего момента и момента сопротивления по отношению к анкерной стенке 12, следует рассмотреть несколько случаев в зависимости от высоты воды над гребнем 6. Значения Р, V и W соответствующих движущего момента и момента сопротивления приводятся ниже для различных случаев, указанные величины приведены на единицу длины блока 11. а) если 0 < Z < 3B, то Р 1/2















































































Формула изобретения
1. ПАВОДКОВЫЙ ВОДОСБРОС ДЛЯ ПЛОТИН, включающий водослив, на гребне которого установлен перегораживающий элемент, причем гребень водослива расположен ниже катастрофического подпорного уровня, отличающийся тем, что перегораживающий элемент выполнен по меньшей мере в виде одного жесткого и цельного блока, удерживающегося на гребне водослива под действием силы тяжести и имеющего высоту, меньшую, чем разница между уровнем гребня водослива и катастрофическим подпорным уровнем, при этом на гребне водослива в основании блока установлена анкерная стенка, а размеры и вес блока подобраны по следующим соотношниям:



при этом



где


RN нормальный подпорный уровень;
N максимальный уровень;
B(при B

MR момент сил тяжести, приложенных к блоку;
Mm и Mm U момент сил давления, приложенных к блоку соответственно при отсутствии противодавления U и при наличии противодавления U. 2. Водосброс по п. 1, отличающийся тем, что между гребнем водослива и основанием блока установлено герметичное уплотнение. 3. Водосброс по пп. 1 и 2, отличающийся тем, что блок выполнен монолитным в форме параллелепипеда. 4. Водосброс по пп.1 и 2, отличающийся тем, что блок выполнен полым в форме параллелепипеда и заполнен балластом. 5. Водосброс по пп. 1 и 2, отличающийся тем, что блок выполнен сборным из плит и включает одну опорную горизонтальную плиту и утановленную на ней одну вертикальную прямоугольную плиту. 6. Водосброс по пп. 1 и 2, отличающийся тем, что блок выполнен в виде нескольких вертикальных плит, установленных на опорных горизонтальных плитах и прилегающих попарно вертикальными краями одна к другой с образованием защитной ширмы от ветра. 7. Водосброс по пп. 1 6, отличающийся тем, что блок имеет непрямую линию гребня. 8. Водосброс по пп. 1 7, отличающийся тем, что в блоке выполнен по меньшей мере один воздушный канал, верхний конец которого сообщен с атмосферой и расположен на максимальном уровне, а нижний между основанием блока и гребнем водослива. 9. Водосброс по пп. 1 8, отличающийся тем, что при выполнении перегораживающего элемента в виде нескольких блоков, установленных вдоль гребня водослива вплотную друг к другу, между их вертикальными стенками размещены герметичные уплотнения. 10. Водосброс по пп. 1 9, отличающийся тем, что между основанием блока и гребнем водослива образована камера, имеющая в нижней части дренажное отверстие. 11. Водосброс по п.10, отличающийся тем, что нижняя часть воздушного канала, проходящего через тело блока, сообщена с камерой, образованной между основанием блока и гребнем водослива. 12. Водосброс по пп.1,2,8,10 и 11, отличающийся тем, что блок выполнен в виде нескольких балок, уложенных одна на другую.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение
Дата, с которой действие патента восстановлено: 27.04.2008
Извещение опубликовано: 27.04.2008 БИ: 12/2008