Пенообразующий состав для освоения скважин
Изобретение относится к нефтедобывающей промышленности, а именно к пенообразующим составам, и предназначено для вызова притока жидкости из пласта при освоении скважин. Снижение коррозии оборудования и повышения эффективности освоения скважин за счет одновременной глинокислотной обработки призабойной зоны пласта достигается тем, что пенообразующий состав содержит мочевину, 10,4 10,7 мас. нитрит щелочного металла или щелочно-земельного металла 59,0 60,7 мас. кислоту Льюиса 23,7 - 24,4 мас. стабилизатор пены 0,1 1,3 мас. поверхностно-активное вещество 0,4 0,8 мас. и воду остальное. Кислота Льюиса способствует повышению эффиктивности освоения скважин за счет ее растворяющей способности карбонатных и глиносодержащих горных пород на забое скважины. Состав готовят в виде цилиндрических брикетов марок на основе водорастворимых структурообразующих агентов с насыпной плотностью 1,8-2,0 г/см3 8 табл.
Изобретение относится к нефтедобывающей промышленности, в частности к пенообразующим составам, и предназначено для вызова притока жидкости из пласта при освоении скважины.
Известен состав для вызова притока жидкости из пласта, содержащий мочевину, сульфат алюминия, поверхностно-активное вещество и воду [1] Газонасыщение раствора осуществляется в результате термического гидролиза мочевины по схеме: CO(NH2)2+H2O __


(3)
Недостатками данного состава являются то, что:
при взаимодействии кислоты и солей нитрита при рН 4,0 выделяется бурый газ, под действием которого происходит коррозия оборудования. При температуре состава выше 20оС азотистая кислота разлагается с выделением диоксида и оксида азота. Диоксид азота (бурый газ) при взаимодействии с водой образует азотную кислоту по следующей схеме:
2HNO2

(4)
N2O3__



(5)
2NO2+H2O

(6) а в присутствии окислителя и свободного кислорода:
4NO2+2H2O+O2

(7)
уротропин разлагается с выделением формальдегида и аммиака в кислой среде. Продукт разложения уротропина и сама кислота являются коррозионно-активными агентами;
пенообразование происходит при любых положительных температурах сразу же при смешении исходных компонентов и имеет взрывообразный характер. Целью изобретения являются снижение коррозии оборудования и повышение эффективности освоения скважины за счет одновременной глинокислотной обработки призабойной зоны пласта (ПЗП). Достигается это тем, что известная самогенерирующая пенная система для освоения скважины, содержащая мочевину, нитрит щелочного или щелочно-земельного металла, поверхностно-активное вещество (ПАВ), кислоту и воду, в качестве кислоты содержит гидрофторид аммония и дополнительно содержит структурообразующий агент карбоксиметилцеллюлозу (КМЦ) или полиакриламид (ПАА) при следующем соотношении, мас. Мочевина 10,4-10,7
Нитрит щелочного или
щелочно-земельного металла 59,0-60,7 Гидрофторид аммония 23,7-24,4
Структурообразующий агент 0,1-1,3 ПАВ 0,4-0,8 Вода Остальное
Газовыделение и пенообразование в пластовых условиях происходит самопроизвольно через ряд промежуточных химических реакций. Общая схема взаимодействия реагентов:
(NH2)2CO+2NH4


(8)
где а стехиометрический коэффициент;
m индекс химической формулы вещества;
Ме щелочной или щелочноземельный металл;
a 4; m 1, когда Ме щелочной металл;
a 2, m 2, когда Ме щелочно-земельный металл. Реакция образования газообразных продуктов полностью смещена вправо и необратима в соответствии с правилом Ле-Шателье. Необратимость химического взаимодействия обусловлена образованием газообразных продуктов, воды и малорастворимых в воде щелочных и щелочно-земельных металлов кроме фторида калия. Растворимость этих солей в 100 г воды представлены в табл.1. Дополнительно введенный гидрофторид аммония в качестве кислоты позволяет получать газообразный продукт и пену в относительно мягких условиях (рН 4,0-5,0). Скорость пенообразования зависит и контролируется концентрацией исходных компонентов, в особенности содержанием в пенообразующем составе структурообразующего агента. Гидрофторид аммония является солью, образованной из остатков слабой фтористоводородной кислоты и слабого основания гидрооксида аммония. В результате гидролиза гидрофторида аммония в водном растворе в небольших количествах образуются фтористо-водородная кислота и гидрооксид аммония. Раствор соли имеет слабокислую реакцию (рН

приготавливают 3-25%-ный водный раствор КМЦ или ПАА и оставляют его для набухания на 3-4 ч. Размельчают исходные компоненты каждый в отдельности до порошка и составляют две тестообразные смеси:
первую получают при тщательном перемешивании мочевины, нитрита щелочного или щелочноземельного металла, порошкообразного или вязко-упругого поверхностно-активного вещества (ПАВ) с 3-25% -ным водным раствором КМЦ или ПАА (смесь "А");
вторую при перемешивании гидрофторида аммония с 15-25%-ным водным раствором КМЦ или ПАА (смесь "Б"). Тестообразные смеси формуют в виде стержней (цилиндрических брикетов) и сушат. Изготовленное таким образом расчетное количество стержней последовательно забрасывают во внутрь насосно-компрессорных труб (НКТ) через сальник-лубрикатор, установленный на устье скважины. Последними вводят стержни, изготовленные из смеси "Б". Скважину закрывают на реагирование и выдерживают 20-60 мин, затем постепенно стравливают давление через НКТ или затрубное пространство осуществляют, вызов притока жидкости из пласта. Продолжительность технологического процесса и величина депрессии на пласт зависят от количества вводимых цилиндрических брикетов до забоя скважины, от исходного содержания структурообразователя в брикетах "Б" и температуры пласта. Повышенное содержание структурообразующих агентов КМЦ или ПАА в брикетах увеличивает время их растворения и оказывает влияние на процесс взаимодействия исходных компонентов и скорость газонасыщения раствора и наоборот. В табл. 4 приведено время растворения брикетов "Б" от массового содержания структурообразующего агента КМЦ при температуре 40оС. В пластовых условиях за счет термической энергии пласта, повышается растворимость исходных компонентов пенообра- зующего состава и увеличивается скорость их химического взаимодействия (термический катализ) и пенообразования на забое скважины. Предлагаемый пенообразующий состав для освоения скважины позволяет получить пену с регулируемой скоростью газовыделения до 100 л/с и около 200 м3 газообразных продуктов, состоящих на 80% из азота и 20% углекислого газа, на 1 т брикетов "А" и "Б". Содержание в брикете "А" мочевины, нитрита щелочного или щелочно-земельного металла, ПАВ, структурообразующего агента и воды (мас.) приведено в табл.5. Наибольшие количества воды и структурообразующего агента имеют брикеты "А", составленные из менее растворимых в воде нитритов щелочно-земельных металлов, их растворимость в 100 г воды менее 50 г при температуре 20оС. Брикеты "Б" состоят на 90-98% из гидрофторида аммония, остальное 15-25% -ный водный раствор КМЦ или ПАА. В целях повышения эффективности освоения скважины за счет одновременной глинокислотной обработки призабойной зоны пласта, брикетов "Б" вводят до забоя скважины на 20% больше расчетного. Весовые соотношения брикетов "А" и "Б" для полной реализации технологического процесса должны быть на уровне тех значений, который приводятся в табл.6 и 7. П р и м е р. Пенообразующий состав испытывается на лабораторной установке, представляющей модель скважины, при температуре 25оС. Готовят стержни (брикеты "А") на основе 5% -ного раствора КМЦ строго в стехиометрических соотношениях исходных компонентов, мас. Мочевина 17,1 Нитрит натрия 78,4 Сульфанол НП-3 1,0 КМЦ 0,2 Вода 3,3. Брикет "Б" готовят на 15%-ном растворе КМЦ при следующих соотношениях компонентов, мас. Гидрофторид аммония 96,0 КМЦ 0,6 Вода 3,4 При весовом соотношении брикетов "А" и "Б" (см. пример конкретного выполнения) и с учетом избытка гидрофторида аммония на 20%
100:

100 40,6 или 2,46 1,00 пенообразующий состав будет иметь исходное содержание всех компонентов, мас. Мочевина 12,2 Нитрит натрия 55,9 Гидрофторид аммония 27,7 НП-3 0,7 КМЦ 0,3 Вода 3,2
Результаты лабораторных исследований приведены в табл.8, из которой следует, что:
газонасыщение и пенообразование интенсивно происходит при температуре 25оС, если удельный расход брикетов выше 100 кг на одну тонну жидкости на забое скважины;
брикеты "Б", содержащие 0,6% КМЦ и 3,4% воды, набухают и полностью растворяются в течении 20 мин;
в результате химического взаимодействия составляющих пенообразующий состав, выделение и образование диоксида азота (бурого газа) не наблюдается. На основании результатов лабораторных испытаний пенообразующего состава для освоения скважины в виде брикетов при одинаковой интенсивности пенообразования по сравнению с прототипом и другими составами экономически выгодно и целесообразно. Предлагаемый пенообразующий состав проявляет меньшую коррозионноактивность, за счет замены подкисляющего агента солью, образованной из остатков слабого основания гидрооксида аммония и слабой гидрофтористой (плавиковой) кислоты. Гидрофторид аммония способен растворить и разрыхлить глиносодержание породы, тем самым оказывает влияние на эффективность освоения скважины. П р и м е р. Для вызова притока флюида из низкопроницаемого пласта добывающей скважины, обводненностью 40% пластовое давление 70 ат, температура на забое скважины 60оС и оборудованной 75-миллиметровой эксплуатационной насосно-компрессорной трубой требуется освоить скважину пенообразующим составом в виде цилиндрических брикетов. Необходимо определить общее количество брикетов для проведения технологического процесса, чтобы получить 90,0 м3 газообразных продуктов на призабойной зоне пласта в течение 20-30 мин. Готовят пенообразующий состав (стационарно) в виде двух брикетов "А" и "Б". Брикет "А" из тестообразной смеси на основе 10%-ного водного раствора КМЦ, содержащий мочевину, нитрит калия, ОП-10, КМЦ и воду при следующих соотношениях компонентов, мас. (табл.5) Мочевина 14,2 Нитрит калия 80,8 ОП-10 1,0 КМЦ 0,4 Вода 3,6
Брикет "Б" на основе 20%-ного раствора КМЦ, содержащий гидрофторид аммония, КМЦ и воду, мас. чтобы он растворился более чем за 20 мин (табл.4): Гидрофторид аммония 90,0 КМЦ 2, Вода 8,0. Для освоения скважины с одновременной глинокислотной обработкой забрасывают последовательно до забоя скважины через сальник-лубрикатор, установленный на устье скважины, расчетное количество сначала брикетов "А", а затем брикеты "Б". На основе общей схемы (8) взаимодействия газовыделяющих компонентов составляют химические уравнения:
(NH





Определим молекулярные массы реагирующих веществ: для
2NH4



4KNO2__


(NH2)2CO __


V 22,4 (4 + 1) 112,0 л или на 1 г исходных веществ: V

2NH4


2KNO2:(NH2)2CO-

(NH2)2CO: (NH2)2CO-


Нитрит калия

Приняв во внимание 20%-ный избыток гидрофторида аммония и его содержание 90% в брикете "Б" (табл.4) при соотношении молекулярных масс гидрофторида аммония и мочевины: 1,90:1,00, весовое соотношение брикетов "А" и "Б" должно быть (табл.6):
"A":"Б" 100,0:

"A" "Б" 2,78 1,00. Объем выделившихся газов в результате химической реакции 1 т пенообразующего состава равен 194,3 м3 и пенообразующий состав будет иметь концентрацию исходных компонентов, мас. Мочевина 10,4 Нитрит калия 59,0 Гидрофторид аммония 23,7 НП-3 0,7 КМЦ 0,8 Вода 4,4
Q (104 + 590 +

"A"-

"Б"-



Формула изобретения
Нитрит щелочного или щелочноземельного металла 59,0 60,7
Кислота Льюиса 23,7 24,4
Стабилизатор пены 0,1 1,3
Поверхностно-активное вещество 0,4 0,8
Вода Остальное
2. Состав по п. 1, отличающийся тем, что в качестве кислоты Льюиса он содержит гидрофторид аммония, а в качестве стабилизатора пены - водорастворимое полимерное соединение карбоксилметилцеллюлозу или полиакриламид.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5