Использование: в приводах широкого назначения, реализующих преобразование электрической энергии в поступательное перемещение. Линейный электропривод содержит индуктор 1, вторичный элемент 3, слой магнитной жидкости 4 между ними в диэлектрической оболочке 5 и обмотку 6 управления, которая размещена вне слоя магнитной жидкости и снабжена дополнительным магнитопроводом 7 с зубчатыми полюсными наконечниками 8, охватывающими слой магнитной жидкости с продольных его торцов, причем оси зубцов полюсных наконечников 8 совпадают с продольными осями зубцов индуктора 1. При работе электропривода рабочая часть магнитного потока индуктора 1 взаимодействует с вторичным элементом 3, создавая тяговое усилие. Другая часть потока шунтируется магнитной жидкостью 4 в оболочке 5, не участвуя в создании тягового усилия. Изменяя объемную концентрацию магнитной жидкости 4 в области полюсных наконечников, что можно осуществить непосредственным воздействием на нее магнитного поля тока обмотки 6 управления, размещенной вне слоя магнитной жидкости 4, можно изменять величину рабочего потока и регулировать, таким образом, величину тягового усилия. 6 ил.
Изобретение относится к электротехнике.
Известен линейный электропривод, содержащий индуктор и вторичный элемент, разделенные зазором [1] Недостатки аналога обусловлены наличием сложных и дорогих силовых полупроводниковых преобразователей, необходимых для регулирования тягового усилия привода в широких пределах.
Известен также линейный электропривод, принятый в качестве прототипа, в котором кроме индуктора и вторичного элемента имеются ферромагнитный слой управления, размещенный между индуктором и вторичным элементом, а также обмотка управления этим слоем, расположенная на зубчатых полюсных наконечниках [2] Тяговое усилие привода наибольшее F
max, когда магнитная проницаемость слоя управления минимальна (
су
о), и минимально F
min= 0, когда магнитная проницаемость максимальна (
су 
).
Недостатки прототипа связаны с ограниченным диапазоном регулирования тягового усилия привода. Это обусловлено ограниченным диапазоном изменения магнитной проницаемости слоя управления за счет подмагничивания Минимальная магнитная проницаемость слоя управления
су, равная магнитной проницаемости воздуха (
су
о), и максимальная
су 
физически недостижимы за счет подмагничивания. Поэтому тяговые усилия привода в этих случаях F
lmax < F
max и F
lmin > F
min за счет подмагничивания изменяются в диапазоне

FF
lmax F
lmin < F
max 0.
Задача, которую решает изобретение, создание линейного привода с расширенным диапазоном регулирования тягового усилия.
Сущность изобретения заключается в том, что линейный электропривод, содержащий зубчатый индуктор, вторичный элемент и обмотку управления ферромагнитным слоем управления в рабочем зазоре, размещенную на зубчатых полюсных наконечниках, снабжен дополнительным магнитопроводом, при этом ферромагнитный слой управления в рабочем зазоре выполнен в виде магнитной жидкости в диэлектрической оболочке, размещенной между зубчатым индуктором и вторичным элементом, а зубчатые полюсные наконечники обмотки управления выполнены на дополнительном магнитопроводе охватывающими магнитную жидкость с продольных его торцов, причем оси зубцов полюсных наконечников совпадают с продольными осями зубцов индуктора.
Отличие изобретения от прототипа заключается в том, что ферромагнитный слой управления в рабочем зазоре выполнен в виде магнитной жидкости в диэлектрической оболочке, размещенной меду зубчатым индуктором и вторичным элементом, привод снабжен дополнительным магнитопроводом с обмоткой управления и зубчатыми полюсными наконечниками, охватывающими магнитную жидкость с продольных его торцов, причем оси зубцов полюсных наконечников совпадают с продольными осями зубцов индуктора.
Технический результат, получаемый при осуществлении изобретения, заключается в расширении диапазона регулирования тягового усилия привода.
На фиг.1-3 показан линейный электропривод; на фиг.4 и 5 показано распределение магнитной жидкости в диэлектрической оболочке при отсутствии сигнала в обмотке управления и при его максимальном значении; на фиг.6 представлены механические характеристики электропривода, где
р рабочий поток взаимоиндукции элементов электропривода,
у магнитный поток обмотки управления,
ш магнитный поток, шунтируемый слоем управления, V и F скорость перемещения и тяговое усилие привода соответственно. Линейный электропривод содержит индуктор 1 с многофазной обмоткой 2 и вторичный элемент 3. Магнитная жидкость 4 находится в диэлектрической оболочке 5.Обмотка 6 управления снабжена магнитопроводом 7 с зубчатыми полюсными наконечниками 8. Оси зубцов полюсных наконечников 8 совпадают с продольными осями индуктора 1.
При работе электропривода на различных режимах формиpуются механические характеристики 9, 10, 11 (фиг.6).
Линейный электропривод с магнитожидкостным управлением работает следующим образом.
При подключении обмотки 2 индуктора 1 к силовой питающей сети (не показана) и отсутствии тока в обмотке 6 управления (
у 0) уровень магнитной жидкости 4 в оболочке 5 устанавливается одинаковым вдоль всего индуктора, как это показано на фиг.4. При этом в электроприводе имеется лишь магнитный поток
ш (фиг. 4), а рабочий поток взаимоиндукции практически отсутствует (
р
0) и электропривод не развивает тягового усилия (F 0). Механическая характеристика привода, формируемая при этом, имеет вид линии 9 на фиг.6. При наибольшем токе в обмотке 6 управления (
у увеличивается) магнитная жидкость максимально втягивается в области с наибольшим значением напряженности магнитного поля, создаваемого этой обмоткой, т.е. в области, расположенные по оси зубчатых полюсных наконечников 8. Эти области совпадают с областями зубцов индуктора 1. Таким образом, объемная концентрация (толщина) магнитной жидкости 4 над зубцами и пазами индуктора 1 в пределах зубцовых делений становится различной. Она наибольшая над зубцами индуктора 1, а над пазами минимальна (фиг.5).
Магнитная проводимость магнитной цепи для рабочего магнитного потока взаимоиндукции
р между индуктором и вторичным элементом 3 и соответственно поток
р будут наибольшими. Практически весь поток, создаваемый индуктором 1, становится рабочим
р (фиг.5) Он взаимодействует с вторичным элементом 3 и создает наибольшее тяговое усилие (F F
max). При этом формируется механическая характеристика 10 (фиг.6).
При сигналах управления, промежуточных между отмеченными предельными значениями, объемная концентрация магнитной жидкости 4 в пределах зубцового деления индуктора 1 непостоянная, имея большее значение над его зубцами. Распределение магнитной жидкости вдоль зубцового деления индуктора будет промежуточными между распределениями, показанными на фиг.4 и 5. При этом часть магнитного потока, создаваемого индуктором 1, шунтируется магнитной жидкостью, образуя магнитный поток
ш, а другая часть образует рабочий поток
р, проходящий во вторичный элемент 3 и создающий тяговое усилие 0 < F < F
max. При этом формируется механическая характеристика 11, промежуточная между характеристиками 9 и 10 (фиг.6). Таким образом, изменением тока в обмотке 6 управления обеспечивается перераспределение магнитной жидкости вдоль зубцового деления индуктора, что и приводит к регулированию тягового усилия линейного электропривода.
В предложенном линейном электроприводе изменение магнитных проводимостей для потоков рассеяния и взаимоиндукции осуществляется от минимально возможных до максимальных значений, чем и обеспечивается расширенный по сравнению с прототипом диапазон регулирования тягового усилия привода.
Формула изобретения
ЛИНЕЙНЫЙ ЭЛЕКТРОПРИВОД, содержащий зубчатый индуктор, вторичный элемент и обмотку управления с ферромагнитным слоем управления в рабочем зазоре, размещенную на зубчатых полюсных наконечниках, отличающийся тем, что он снабжен дополнительным магнитопроводом, ферромагнитный слой управления в рабочем зазоре выполнен в виде магнитной жидкости в диэлектрической оболочке, размещенной между зубчатым индуктором и вторичным элементом, а зубчатые полюсные наконечники обмотки управления выполнены на дополнительном магнитопроводе, охватывающем магнитную жидкость с продольных его торцов, причем оси зубцов полюсных наконечников совпадают с продольными осями зубцов индуктора.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3,
Рисунок 4,
Рисунок 5,
Рисунок 6