Изобретение относится к электротехнике, а именно к преобразовательной технике и трансформаторостроению. Сущность: трансформатор содержит три тороидальных сердечника 1, 2, 3 с прямоугольной петлей гистерезиса разного сечения, определяемого из условий, приведенных в тексте описания. При этом каждый из сердечников охвачен собственной намагничивающей обмоткой W11, W12, W13 с числом витков, определяемым из условий W11
1,2 W12, W11
2,4 W13, соединенных друг с другом согласно-последовательно, и выходной обмоткой, разделенной на три секции так, что первые выходные секции обмоток сердечников соединены друг с другом согласно-последовательно и образуют первую фазу трансформатора, вторые и третьи встречно-последовательно и образуют соответственно вторую и третью фазы трансформатора. Благодаря использованию отдельных намагничивающих обмоток для каждого сердечника, последние перемагничиваются не одновременно, а поочередно, (друг за другом), а в выходных трехфазных обмоток возникают импульсы ЭДС-фаз, сдвинутых относительно друг друга на 120°. Таким образом, изобретение позволяет преобразовать однофазное напряжение в трехфазное. 2 ил.
Изобретение относится к преобразовательной технике и может быть использовано в высокочастотных блоках электропитания электропривода систем навигации, управления автономных объектов.
Широко известны трехфазные инверторы, преобразующие напряжение постоянного тока в трехфазное напряжение переменного тока [1] Такие инверторы содержат три инверторных модуля, в каждом из которых имеется однофазный трансформатор, и сложную систему управления силовыми ключами для синтезирования трехфазного напряжения.
К недостаткам таких инверторов можно отнести следующие факторы: сравнительно низкие массогабаритные показатели, сложная система управления ключами, децентрализованная структура построения преобразователя.
Известны также трехфазные трансформаторы [2] где для трансформации трехфазного тока используют три однофазных трансформатора, которые включаются по отдельности в каждую фазу трехфазной сети. Ча ще, однако, применяются трехфазные трансформаторы с общим для всех фаз сердечником, так как такие трансформаторы стержневого типа компактнее и дешевле.
Идея образования трехфазного трансформатора стержневого типа показана в [2] (см. стр.232, рис.12-4).
По принципу действия все указанные трансформаторы работают только при наличии трехфазной входной сети, для получения которой в бортовой СЭС требуется либо электромашинный генератор, либо трехфазные инверторы на основе параллельного включения трех однофазных модулей со сложной системой управления с питанием от химических источников тока или солнечных батарей. Такие СЭС, как правило, имеют сравнительно низкие удельные показатели. В то же время анализ показывает, что в последние годы наибольшее распространение получают высоковольтные СЭС постоянного тока с высокочастотным преобразованием и централизованной структурой построения вторичных источников электроэнергии.
Наиболее близким по технической сущности к предлагаемому устройству является [2] трехфазный трансформатор, собранный из отдельных сердечников, каждый из которых охвачен собственной намагничивающей и выходной обмотками для работы от трехфазной входной сети. Основным недостатком такого трехфазного трансформатора является невозможность его работы от однофазной входной сети переменного тока, т.е. невозможность преобразования однофазного напряжения в трехфазное.
Целью изобретения является уменьшение массы и габаритов, а также повышение надежности работы трехфазных инверторов посредством преобразования однофазного напряжения с выхода инверторного модуля в трехфазное напряжение переменного тока для питания высокоскоростных гироскопических электрических машин, а также средств связи и управления автономным объектом.
Поставленная цель достигается тем, что в трехфазном трансформаторе, содержащем три отдельных сердечника, каждый из которых охвачен собственной намагничивающей и выходной обмотками, сердечники трансформатора выполнены тороидальными из материала с прямоугольной петлей магнитного гистерезиса с различным сечением, определяемым из условий S
1

S
1

где S
1, S
2, S
3 сечения соответственно первого, второго и третьего сердечников; 1,2 и 2,4 граничные коэффициенты сечения сердечников; при этом намагничивающие обмотки каждого сердечника соединены друг с другом согласно-последовательно и имеют разное число витков, определяемое из условий W
11 
1,2W
12; W
11 
2,4W
13, где W
11, W
12, W
13 число витков намагничивающих обмоток; 1,2 и 2,4 граничные коэффициенты количества витков обмоток, а выходные обмотки сердечников разделены на три секции так, что первые выходные секции обмоток сердечников соединены друг с другом согласно-последовательно и образуют первую фазу трансформатора, вторые и третьи встречно-последовательно и образуют соответственно вторую и третью фазы трансформатора. Предлагаемое устройство позволяет добиться в разветвленной магнитной цепи одного из условий наблюдаемости "эффекта" поочередного перемагничивания (без нарушения этой очередности) всех сердечников трансформатора сначала первого, затем второго, затем третьего в любой из полупериодов работы инвертора. При этом при перемагничивании К-го сердечника в его выходные обмотки трансформируются ЭДС, смещенные по оси времени на 60 эл. градусов относительно выходных импульсов (К-1) сердечника. При включении выходных обмоток трехфазного трансформатора можно получить трехфазное напряжение, каждая фаза которого смещена относительно соседней на 120 эл. градусов. С целью проверки основных теоретических выкладок по предлагаемому устройству был изготовлен макет и сняты осциллограммы, подтверждающие достоверность результатов исследований.
Опыты показали, что при изготовлении трансформатора следует прежде всего добиться "эффекта" поочередного перемагничивания сердечников в нужной последовательности и с требуемым временем их перемагничивания. Это достигается изменением числа витков в намагничивающих обмотках и сечения сердечников и контролируется либо двух, либо трехканальным осциллографом. Затем, подключив к осциллографу поочередно выходные фазные обмотки трансформатора, изменяют число витков по каждому сердечнику и добиваются требуемой формы выходного напряжения и его амплитуды согласно методики, изложенной, например, в [1] На фиг. 1 представлена принципиальная электрическая схема трехфазного трансформатора; на фиг.2 представлены эпюры напряжений в выходных обмотках трехфазного трансформатора.
Принципиальная электрическая схема трехфазного трансформатора TV (cм. фиг. 1) состоит из трех тороидальных сердечников 1, 2, 3 разного сечения, определяемого согласно условий S
1 
S
2/1,2; S
1 
S
3/2,4, из магнитного материала с прямоугольной петлей гистерезиса (ППГ), каждый из которых охвачен намагничивающей W
11 (W
12, W
13) и тремя выходными обмотками W
21A, W
21B, W
21C (W
22A, W
22B, W
22C), (W
23A, W
23B, W
23C). При этом намагничивающие обмотки каждого сердечника соединены друг с другом согласно-последовательно (W
11-W
12-W
13) и имеют разное число витков, определяемое согласно условий: W
11
1,2W
12; W
11

2,4W
13. Каждая первая выходная обмотка всех сердечников W
21A, W
22A, W
23A соединена с другой согласно-последовательно и образует первую фазу трехфазного трансформатора, каждая вторая выходная обмотка всех сердечников W
21В, W
22В, W
23В соединена с другой встречно-последовательно и образует вторую фазу трехфазного трансформатора, каждая третья выходная обмотка всех сердечников W
21С, W
22С, W
23С соединена с другой всречно-последовательно и образует третью фазу указанного трансформатора.
На фиг.1 и 2 обозначено: U напряжение; Н инвертор; ТV трансформатор; Z
A, Z
B, Z
C фазная нагрузка трансформатора; 1, 2, 3 номер сердечника; U
A, U
B, U
C синтезируемое мгновенное квазисинусоидальное фазное напряжение;

t текущая фаза напряжения.
Предлагаемое устройство работает следующим образом.
При подаче на обмотку W
1 (W
11, W
12, W
13) трансформатора TV знакопеременного однофазного прямоугольного напряжения (меандра) U
1 с выхода инвертора преобразователя по обмоткам W
1 начинает протекать ток и образуются магнитодвижущие силы F
11=I
1W
11; F
12=I
1W
12; F
13=I
1W
13, которые осуществляют поочередное намагничивание сердечников трансформатора. При этом в каждом сердечнике 1, 2, 3 трансформатора TV появляется знакопеременный во времени магнитный поток, а во всех обмотках трансформатора возникают электродвижущие силы (ЭДС).
С целью выяснения процесса преобразования однофазного входного напряжения прямоугольной формы в квазисинусоидальное трехфазное выходное напряжение рассмотрим два основных режима работы предлагаемого устройства: режим холостого хода (Х-Х) и режим нагрузки.
1. Режим холостого хода (Z
A=Z
B=Z
C 
) "Эффект" поочередного перемагничивания сердечников трансформатора TV достигается посредством применения в немагничивающей обмотке W
1разного числа витков W
11 
W
12 
W
13 при идентичности параметров сердечников B
S1=B
S2=B
S3, l
1=l
2=l
3, Н
с1=H
с2=H
с3, где B
S индукция насыщения, Тл; l средняя длина сердечника, м; Н
с коэрцитивная сила, а/м. Все сердечники имеют прямоугольную петлю магнитного гистерезиса (ППГ).
Тогда согласно закону полного тока в сердечниках трансформатора TV, охваченных обмотками W
11, W
12, W
13, по которым протекает общий ток I
1, возникают напряженности электромагнитного поля согласно выражениям
H
11 
;H
12 
; H
13 
.
Первым начнет перемагничиваться тот сердечник, у которого текущая напряженность Н
1i 
H
ci, где i номер сердечника.
Пусть W
11>W
12>W
13, тогда первым начнет перемагничиваться первый сердечник, так как Н
11 
Н
с1. К обмотке W
11 прикладывается все напряжение U
1.
На время перемагничивания первого сердечника все другие сердечники не перемагничиваются. Это происходит по той причине, что для второго и третьего сердечников Н
12<Н
; Н13<Н. Покажем это. Пусть ток I1, протекающий по обмоткам, достиг величины, достаточной для перемагничивания первого сердечника I1=Ic1=
. Тогда с учетом разности витков W11>W12>W13, равенства l1=l2=l3, Нс1=Нс2=Нс3 получим
I1=Ic1=
откуда
H12=Hc1
< Hc2 (где W11>W12);
H13=Hc1
< Hc3 (где W11>W13). Последние выражения показывают, что условия для намагничивания второго и третьего сердечников не созданы. Только после перемагничивания первого сердечника ток I1 в первичной обмотке возрастает до значения
I1= Ic2
начинает перемагничиваться второй сердечник, затем по очереди третий сердечник. При смене полярности входного напряжения U1 процесс поочередного перемагничивания сердечников повторяется в той же последовательности, но уже в обратную сторону от +Вs к -Bs. В процессе поочередного перемагничивания сердечников в выходных обмотках трансформатора TV, W21A, W22B, W23A (W21B, W22B, W23B), (W21C, W22C, W23C) наводятся ЭДС с полярностью и по величине, зависящей от направления намотки обмоток и числа витков. При включении всех выходных обмоток по схеме "Звезда" с нулевым проводом согласно принципиальной электрической схемы (см. фиг.1) можно получить квазисинусоидальное трахфазное выходное напряжение (см. фиг.2). Если не учитывать потери напряжения на рассеяние и активных сопротивлений обмоток, то согласно электромагнитному закону для положительного полупериода работы инвертора электромагнитный процесс в трансформаторе TV может быть описан системой уравнений
U1=(Lg1+Lg2+Lg3)
-(l*11+l*12+l*13);
uA -
l*11+
l*12+
l
;
uB -
-
l*11-
l*12+
l
;
(1)
uC -
l*11-
l*12-
l
;
i1= ixx
где Lg1=
W211
W211
g1 дифференциальная индуктивность обмотки от перегмагничивания сердечника 1;
Lg2= W212
g2 дифференциальная индуктивность обмотки от перемагничивания сердечника 2;
Lg3= W213
g3 дифференциальная индуктивность обмотки от перемагничивания сердечника 3;
потокосцепление;
g
дифференциальная проницаемость магнитного материала;
S сечение сердечника. Из первого уравнения системы (1) получим выражение для скорости изменения тока холостого хода во времени, т.е.
(2)
Тогда с учетом (2) и вышеизложенных пояснений выражения для определения составляющих противоЭДС (l11*, l12*, l13*) в намагничивающей обмотке W1 от перемагничивания идентичных сердечников 1, 2, 3
l*11=
U1=
U1 (3)
l*12=
U1=
U1; (4)
l*13=
U1=
U1; (5)
Зная величины l11*, l12*, l13* в любой момент времени процесса трансформации не трудно определить все другие ЭДС трансформатора TV. Примем в качестве аппроксимирующей кривой ППГ зависимость В=
arcrg
(H-Hc), где Н текущая напряженность поля под катушкой;
и
коэффициенты; Нс коэрцитивная сила. Следовательно
g
(6)
Анализ (6) показывает, что если используется магнитный материал с ППГ, то справедливо условие
gi
i=1,2,3, ..., n,
т.е. на горизонтальных участках ППГ
gi
0, а на вертикальных
gi-> 
Рассмотрим процесс поочередного перемагничивания сердечников магнитопровода более подробно. Пусть исходное состояние сердечников трансформатора соответствует состоянию -Вr1, -Br2, -Br3. Тогда с появлением тока в намагничивающей обмотке W1, амплитуда его скачком принимает значение, равное Ic1=
. Скачок тока происходит вследствие того, что все сердечники имеют
i
0, т.е. их реактивное сопротивление отсутствует, либо близко к нулю. При достижении iхх=Iс1 начинает перемагничиваться сердечник 1, а на время его перемагничивания амплитуда ixx=Ic1=const и не достаточна для перемагничивания сердечника 2 и 3. Происходит следующее:
а) Пеpемагничивание сердечника 1. Выражение (2) и (3) с учетом
gi=
,
g2=0,
g3=0 будет иметь вид
0; (8)
l*11=
U1=
U1=U1. (9)
Следовательно, после интегрирования (8) получим
lxx=const=Ic1
(10)
Из (8) и (10) следует, что ток холостого хода ixx в обмотке W1трансформатора TV на время перемагничивания сердечника 1 остается практически неизменным по амплитуде. В выходные обмотки W21A, W21B, W21C трансформируется напряжение, равное (см. фиг.2)
u21A=
l*11;
u21B=
l*11;
u21C=
l*11, где l*11=U1. (11)
Все другие противоЭДС l12* и l13* на время перемагничивания сердечника 1 равны нулю, а это время может быть определено согласно выражению
t1=
(12)
б) Перемагничивание сердечника 2. После насыщения магнитного материала сердечника 1 его дифференциальная индуктивность вновь становится практически равной нулю. При этом iхх вновь скачком принимает значение, равное ixx=Ic2=
, достаточное для намагничивания сердечника 2. Далее процесс намагничивания аналогичен рассмотренному выше. На время перемагничивания сердечник 2
l11*=0; l12*=U1; l13*=0, а само время равно
t2=
(13)
В выходных обмотках W22A, W22B, W22C, охватывающих сердечник 2, формируются прямоугольные импульсы напряжения, равные по величине (см. фиг.2)
u22A=
l*12;
u22B=
l*12;
u22C=
l*12, где l*12 U1
(14)
в) Перемагничивание сердечника 3. Процесс перемагничивания аналогичен рассмотренному выше (см.фиг.2), где
ixx=
; l11*=0; l12*=0; l13*=U1
t3=
(15)
В выходных обмотках W23A, W23B, W23C формируются прямоугольные импульсы напряжения, равные по величине
u23A=
l*13;
u23B=
l*13;
u23C=
l*13, где l*13=U1;
(16)
При смене полярности входного напряжения U процесс перемагничивания сердечников трансформатора повторится в той же последовательности, но перемагничивание происходит уже в обратном направлении (к исходному состоянию магнитного материала) от +Вri к -Вri, где1,2,3. Во вторичных обмотках, включенных по схеме "звезда" с нулевым проводом с учетом заданного числа витков в каждой W2ij (где i номер сердечника; j номер фазы), может быть получено трехфазное ступенчатое напряжение, близкое по форме к синусоиде (изменяя либо число витков W2ij, либо сечение сердечника Si), каждая фаза которого сдвинута на угол в 120о (см. фиг.2). 2. Режим нагрузки (ZA=rA=ZB=rB=Zc=rc). Пусть нагрузка по всем фазам трансформатора симметричная. Тогда режиму нагруженного трансформатора соответствует система уравнений для мгновенных значений напряжений
U=Lg
+ Lg2
+ lg3
-(l*11+l*12+l*13)
uA=iНА
rA= -
l*11+
l*12+
l
;
uB=iНB
rB= -
-
l*11+
l*12+
l
;
uC=iНC
rC=
,
(17) где i
i ток намагничивания. Для мгновенных значений токов в электрических цепях трансформатора TV система уравнений имеет вид
iW11= i
1 W11+iНАW21-iHBW21+iHCW21;
iW12= i
2 W12+iHAW22-iHBW22-iHCW22;
iW13= i
3 W13+iHAW23+iHBW23-iHCW23,
(18) где i ток в первичной обмотке W1 в режиме нагруженного трансформатора;
i
i ток намагничивания. Решая совместно системы уравнений (16) и (17), можно получить функции токов и напряжений трансформатора для любого момента времени. Теоретические и экспериментальные исследования показывают, что предлагаемое устройство целесообразно нагружать по фазам симметричной нагрузкой (электрические двигатели вентиляторов, гироскопов, выпрямительные устройства). В случае несимметрии возможны нарушения очередности перемагничивания сердечников и искажения формы кривой выходного напряжения.
Формула изобретения
ТРЕХФАЗНЫЙ ТРАНСФОРМАТОР, содержащий три отдельных сердечника, каждый из которых охвачен собственной намагничивающей и выходной обмотками, отличающийся тем, что сердечники трансформатора выполнены тороидальными из материала с прямоугольной петлей магнитного гистерезиса с различным сечением, определяемым из условий
S1
S2/1,2,
S1
S3/2,4,
где S1, S2, S3 сечения первого, второго и третьего сердечников соответственно,
при этом намагничивающие обмотки каждого сердечника соединены друг другом согласно-последовательно и имеют разное число витков, определяемое из условий
w11
1,2 w12,
w11
2,4 w13,
где w11, w12, w13 число витков намагничивающих обмоток,
а выходные обмотки сердечников разделены на три секции так, что первые выходные секции обмоток сердечников соединены друг с другом согласно-последовательно и образуют первую фазу трансформатора, вторые и третьи встречно-последовательно и образуют соответственно вторую и третью фазы трансформатора.