Моноблочный кольцевой лазер
Использование: в технике оптической связи, спектроскопии и голографии. Сущность изобретения: активный элемент моноблочного кольцевого лазера выполнен из монокристалла, оптические оси которого ориентированы определенным образом относительно плоскости резонатора лазера. 2 з.п. ф-лы, 3 ил.
Изобретение относится к лазерной технике и может быть использовано в технике оптической связи, спектроскопии и голографии.
Известен лазеp [1] представляющий моноблочную конструкцию из активного вещества иттрий алюминиевого граната с неодимом с кольцевым неплоским резонатором и монохроматической накачкой полупроводниковым лазером, обеспечивающий стабильную одночастотную, однонаправленную генерацию лазерного излучения. Однако, такой лазер сложен в изготовлении и требует сложной юстировки. Наиболее близким к изобретению является лазер [2] с плоским моноблочным кольцевым резонатором. Такой лазер весьма прост в изготовлении и юстировке. Однако недостатком его конструкции является слабое подавление магнитным полем одной из распространяющихся в нем встречных волн, что требует для получения однонаправленной, одночастотной генерации наложения значительных магнитных полей, что весьма усложняет конструкцию лазера. Технической задачей изобретения является повышение стабильности мощности и частоты излучения за счет обеспечения эффективного подавления одной из волн с помощью магнитного поля. Для этого в моноблочном кольцевом лазере с плоским резонатором, имеющим одно сферическое зеркало, кристаллографические оси активного кристалла ориентированы таким образом, что ось с составляет угол 45о с плоскостью резонатора. Целесообразно моноблок выполнить так, чтобы он обладал плоскостью симметрии, а вторая кристаллографическая ось была параллельна оси симметрии резонатора. Целесообразно чтобы вторая кристаллографическая ось была направлена вдоль стороны резонатора, пересекающей сферическое зеркало. В предлагаемом изобретении используется возможность повышения амплитудной и частотной стабильности моноблочного лазера путем выбора ориентации кристаллографических осей его активного элемента. На фиг.1 приведена принципиальная схема моноблочного лазера; на фиг.2 и 3 конструкция активного элемента и ориентация кристаллографических осей в нем. Моноблочный кольцевой лазер содержит полупроводниковый источник 1 накачки с блоком 2 питания, систему 3 фокусировки излучения накачки, активный элемент (монокристалл) 4, постоянный магнит 5 и сферическое зеркало 6. Лазер работает следующим образом. Излучение источника 1 накачки фокусируется системой 3 в активный монокристалл 4 и возбуждает в нем двунаправленную лазерную генерацию. В области накачки происходит разогрев монокристалла, что приводит к возникновению в нем термических напряжений, вследствие чего в кристалле возникает наведенное двулучепреломление. При наложении на активный моноблок магнитного поля в резонаторе лазера создается оптическая невзаимность, приводящая к подавлению одной из встречных волн. Соответствующий выбор ориентации кристаллографических осей активного элемента позволяет существенно повысить амплитудные потери для одной из волн, в то время как для другой волны они будут незначительными. Это обеспечивает более эффективное подавление одной из встречных волн, что позволяет повысить стабильность мощности и частоты излучения для другой волны. В полностью изотропных твердых телах (стеклах) невзаимный эффект и подавление одной из встречных волн при наложении магнитного поля отсутствуют, так как потери для встречных волн определяются модулем угла магнитооптического поворота поляризации, одинаковым для встречных волн. Для появления невзаимного эффекта в таком лазере необходимо создать двулучепреломление в некотором участке лазера, причем оптические оси двулучепреломляющего участка должны быть повернуты относительно плоскости резонатора. В предложенном лазере роль двулучепреломляющего элемента играет оптически накачиваемый участок активного элемента либо небольшая анизотропия, всегда присутствующая или создаваемая механически в активных элементах из кристаллических веществ. Использование термического двулучепреломления наиболее эффективно в симметричном лазере со второй кристаллографической осью, параллельной оси симметрии резонатора. Изобретение было реализовано в моноблочном лазере с плоским резонатором на YAG:Nd3+. Резонатор был образован сферическим зеркалом и тремя поверхностями полного внутреннего отражения. Накачка осуществлялась через сферическую поверхность полупроводниковым InGaAsP/GaAs-лазером, излучающим в области





Формула изобретения
1. МОНОБЛОЧНЫЙ КОЛЬЦЕВОЙ ЛАЗЕР с плоским резонатором, имеющим одно сферическое зеркало, выполненный из кристаллического активного материала, отличающийся тем, что моноблочный резонатор лазера выполнен так, что кристаллографическая ось c составляет угол 45o с плоскостью резонатора. 2. Лазер по п.1, отличающийся тем, что моноблочный резонатор выполнен так, что он обладает плоскостью симметрии, а кристаллографическая ось a кристаллического активного материала параллельна оси симметрии резонатора. 3. Лазер по п.1, отличающийся тем, что кристаллографическая ось a направлена вдоль стороны оптического резонатора, пересекающей сферическое зеркало.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3
Похожие патенты:
Кольцевой лазер // 1814473
Изобретение относится к области квантовой электроники и может быть использовано для создания мощных импульсных источников когерентного узкополосного излучения
Изобретение относится к квантовой электронике, в частности к кольцевым лазерам
Кольцевой лазер // 1602322
Кольцевой газовый лазер // 1477205
Изобретение относится к области квантовой электроники и может быть использовано в лазерной пирометрии
Лазерный гироскоп // 1380564
Изобретение относится к области квантовой электроники, а именно к кольцевым лазерам, предназначенным для измерения угловой скорости вращения
Кольцевой лазер // 1253396
Изобретение относится к квантовой электронике и может быть использовано для создания мощных импульсных источников когерентного узкополосного оптического излучения
Кольцевой резонатор // 1109841
Газовый моноблочный лазер // 2119218
Изобретение относится к квантовой электронике, в частности к технике газовых лазеров, и может быть использовано при конструировании датчиков лазерных гироскопов
Кольцевой лазер // 2188488
Изобретение относится к измерительной технике, в частности к области преобразования параметров вращения в электрический сигнал с помощью гидроскопов, в которых чувствительным элементом служит кольцевой лазер, и может быть использовано, например, в системах навигации
Изобретение относится к лазерной технике и может быть использовано при создании мощных лазеров с активной средой, имеющей прямоугольное сечение, например мощных волноводных газовых лазеров с диффузионным охлаждением или слэб-лазеров
Изобретение относится к твердотельным лазерным гироскопам, предназначенным для измерения скорости вращения или относительных угловых положений, и может быть использовано, в частности, в области аэронавигации
Четырехмодовый гироскоп на стабилизированном твердотельном лазере без зоны нечувствительности // 2382333
Изобретение относится к твердотельным лазерным гироскопам, предназначенным для измерения скорости вращения или относительных угловых положений, и используется, в частности, в области аэронавигации
Импульсный твердотельный лазер // 2390891
Изобретение относится к лазерной технике, в частности к твердотельным импульсным лазерам
Изобретение относится к лазерным гироскопам и предназначено для увеличения срока службы трехосного гироскопа
Изобретение относится к квантовой электронике и может быть использовано для оптической связи, в измерительной технике и лазерной медицине
Изобретение относится к лазерной физике и может быть использовано для создания источников лазерного излучения видимой области света, в оптической иетерферрометрии и измерительной технике
Изобретение относится к квантовой электронике и может быть использовано в лазерной гирометрии и измерительной технике