Устройство для электрохимической обработки воды
Изобретение относится к химической технологии. Сущность изобретения: устройство представляет собой электрореактор, в котором электрохимическая ячейка содержит вертикальные коаксиально установленные цилиндрический анод и стержневой катод, разделенные пористой керамической ультрафильтрационной диафрагмой, которые закреплены во втулках. Втулки и цилиндрический электрод снабжены каналами для подвода и отвода воды. Стержневой электрод выполнен переменного сечения. Устройство содержит по меньшей мере одну ячейку. исходная вода подается через регуляторы воды в анодную и катодную камеры ячейки. С помощью регуляторов расхода воды устанавливаются необходимые соотношения объемных расходов католита и анолита. После электрохимической обработки анолит и католит по отдельным трубопроводам поступает в емкости-накопители. 7 з.п.ф-лы, 4 ил. 3 табл.
Изобретение относится к химической технологии и может быть использовано в процессах, связанных с электрохимическим регулированием кислотно-основных, окислительно-восстановительных свойств и каталитической активности воды, в частности при отмывке электрохимически обработанной водой фармацевтической посуды.
Для отмывки используются слабощелочной католит (катодно электрохимически обработанная вода) и слабокислотным анолит (вода, подвергнутая анодной электрохимической обработке). Католит и анолит функционально представляют собой моющий и дезинфицирующий растворы. В прикладной электрохимии используются электролизеры различных конструкций, обеспечивающие обработку воды. Известно устройство для получения католита и анолита из подсоленной воды, использующихся соответственно в качестве моющего и обеззараживающего растворов в медицине [1] Устройство включает в себя диафрагменный проточный электролизер с плоскими электродами и блок питания, совмещенный с блоком управления. Плоские электродные камеры снижают КПД электролизера, так как в нем образуются застойные зоны и области преимущественно протока воды. Большая протекаемость диафрагмы приводит к смешению продуктов анодных и катодных электрохимических реакций. Керамический материал диафрагмы и соотношение размеров электродных камер не позволяет создать самоорганизующейся структуры течения в потоке воды, протекающей у электродов, что не позволяет уменьшить электрическое сопротивление между электродами. Высокая концентрация исходного солевого раствора не позволяет продуцировать в большом количестве суперактивные соединения, препятствуют разрыхлению структуры воды, что снижает эффективность растворов. Происходит загрязнение окружающей среды отработанными растворами с большой концентрацией соли и устойчивыми продуктами электролиза. При периодической смене полярности электродов (при переключении режимов "анолит", "католит") происходит восстановление рутения на электродах ОРТА, после чего он, растворяясь, попадает в раствор. Невысокая химическая стойкость керамической диафрагмы приводит к поступлению соединений кремния в католит. Наибольшая степень электрохимического превращения из 9 г хлористого натрия, растворенного в 1 л, получается в обычном режиме работы 0,6 г соединений активного хлора. И, наконец, еще одним недостатком известной конструкции является сложность и большие трудозатраты при сборке и ремонте электролизера с плоскими электродами, так как необходимо осуществлять герметизацию комплекта электродов. Наиболее близким по технической сути и достигаемому результату является устройство для электролиза воды [2] которое состоит из цилиндрического электролизера с коаксиально расположенными электродами и диафрагмой между ними, разделяющей внутреннее пространство на катодную и анодную камеры. Каждая камера имеет отдельный вход в нижней и отдельный выход в верхней частях электролизера, сообщающееся с подводящими и отводящими гидравлическими линиями для протока воды под давлением. В состав устройства входит источник постоянного тока, соединенный с электродами электролизера через коммутационный узел, обеспечивающий возможность перемены полярности электродов для устранения катодных отложений с одновременным переключением гидравлических линий, обеспечивающих постоянное поступление растворов из анодной и катодной камеры без смешения. Отмечено, что в процессе эксплуатации данного устройства возможно получение электрохимически обработанной воды с бактерицидными свойствами. В описанном устройстве велики энергопотери при обработке воды с изменяющейся во времени минерализацией. Чем больше минерализация воды, тем большее удельное количество электричества требуется для ее обработки, т.е. тем больше необходима сила тока при постоянном объемном расходе воды. При уменьшении минерализации воды необходимо высокое напряжение для того, чтобы достичь требуемого уровня удельных затрат количества электричества без снижения объемного расхода воды. Чем шире диапазон возможных изменений минерализации воды, тем выше должна быть электрическая мощность источника постоянного тока, поскольку она определяется произведением максимально возможной силы тока на максимально возможное напряжение. Практически отсутствуют случаи, когда мощность используется полезно полностью. При обработке воды со значительной минерализацией протекает большой ток при малом напряжении, при обработке воды с малой минерализацией малый ток при большом напряжении. Потребляемая электролизером мощность в несколько раз (3-10) меньше установленной мощности источника тока, т.е. устройство для электролиза воды имеет низкий КПД. Кроме того устройство не обеспечивает стабильность характеристик получаемых растворов при малой минерализации исходной воды. При необходимости значительного увеличения или уменьшения производительности установки следует использовать электролизеры соответствующих размеров и, следовательно, различной конструкции. При этом каждое конкретное конструктивное исполнение электролизера имеет наибольшую эффективность для заранее определенных условий работы и не может быть рационально использовано в широком диапазоне минерализации, объемных расходов, удельных затрат количества электричества и других параметров. Конструктивные отличия электролизеров различной мощности требуют для каждого из них индивидуальных комплектов основных, запасных деталей и узлов, приспособлений для сборки, наладки, ремонта и обслуживания. Электролизеры, изготовленные по одной и той же конструктивной схеме, но имеющие различные геометрические размеры не схожи по своим электрохимическим характеристикам. Это обуславливает необходимость разрабатывать для каждого типа и вида электролизера специальные правила эксплуатации. Сборка и разборка электролизеров большой мощности связаны со значительными затратами труда и материалов. В электролизерах большой мощности диафрагма и электроды, имеющие развитую поверхность, испытывают значительные деформирующие усилия при изменениях давления и скорости потоков воды. Это снижает надежность и долговечность конструкции, приводит к ухудшению технических характеристик из-за нарушения геометрической формы электродных камер. Особенно сильно такое ухудшение проявляется при обработке воды с малым солесодержанием, поскольку возникают саморазвивающиеся процессы локального концентрирования продуктов электролиза, которые сопряжены с образованием застойных зон, местных разогревов и появлением "пятнистой" проводимости. Цель изобретения упрощение конструкции, снижение трудозатрат при сборке и разборке устройства, а также расширение функциональных возможностей за счет обеспечения различной производительности. Поставленная цель достигается тем, что в устройстве для электрохимической обработки воды, содержащем электрохимическую ячейку, выполненную из вертикальных коаксиальных цилиндрического и стержневого электродов, установленных в диэлектрических втулках, керамической диафрагму, коаксиально установленной на втулках между электродами и разделяющую межэлектродное пространство на электродные камеры, причем в нижней и верхней втулках выполнены каналы для подвода и отвода обрабатываемой воды в камеру стержневого электрода, источник тока, соединенный с электродами через узел коммутации, а также приспособления для подачи и отвода обрабатываемой воды в электродные камеры электрохимической ячейки, устройство содержит по меньшей мере одну ячейку, каналы во втулках выведены на боковые поверхности втулок, диафрагма выполнена ультрафильтрационной из керамики на основе оксида циркония с добавками оксидов алюминия и иттрия и установлена таким образом, что геометрические размеры ячейки удовлетворяют соотношениям




КН нейтральный католит, имеющий рН 7-9;
К щелочной католит, имеющий рН > 9. Реакторы подключают к линиям подачи воды и электроэнергии. Соответственно существуют разнообразные гидравлические и электрические схемы подключения. На фиг.3 показаны принципиальные гидравлические схемы подключения реакторов. Эти схемы являются основными. Другие схемы подключения могут быть получены сочетанием элементов данных схем в различных вариантах. На фиг. 3а изображена схема одновременного получения воды, подвергнутой анодной и катодной электролитической обработке, соответственно анолита и католита. Объемные расходы анолита и католита могут быть одинаковыми, либо отличаться в несколько раз (2-100). Регулировку объемных расходов анолита и католита возможно осуществлять путем увеличения гидравлического сопротивления на входных линиях в реактор, реже на выходных. В анодную и катодную камеры можно подавать воду различной или одной и той же минерализации. Соотношение минерализации потоков воды, поступающих в анодную и катодную камеры, может быть 1-100 и более. Как правило, потоку воды с большей минерализацией должен соответствовать больший объемный расход и наоборот, потоку с большей минерализацией должен соответствовать меньший объемный расход. Ориентировочно данное соотношение выражается уравнением
Q1


С1 минерализация воды, поступающей в первую камеру, г/л (моль/л);
Q2 объемный расход воды через другую электродную камеру реактора, условно называемую второй, л/ч;
С2 минерализация воды, поступающей во вторую камеру, г/л (моль/л). Если во время электролитической обработки воды в реакторе необходимо предотвратить электромиграционное поступление в нее ионов через диафрагму из камеры электрода противоположной полярности, следует повысить давление воды в камере, которая условно именуется "рабочей" или "основной". Повышения давления добиваются увеличением гидравлического сопротивления на выходе рабочей камеры или увеличением объемного расхода воды. Если, наоборот, необходимо увеличить электромиграционный перенос ионов через диафрагму в рабочую камеру, следует увеличить давление в камере электрода противоположной полярности, называемой вспомогательной, или уменьшить в рабочей. При помощи описанной схемы возможно получение раствора типа А и К. На фиг.3,б представлена схема получение анолита рН 5-7. Катодная электродная камера, в которой находится сильнощелочной раствор вспомогательного электролита (рН 12), замкнута на емкость вспомогательного электролита с установленным на ней газоотделителем. Таким образом, вспомогательный электролит находится в циркуляционном контуре, из которого постоянно удаляются электролизные газы без потери самого раствора. Движение раствора вспомогательного электролита в контуре происходит под действием подъемной силы пузырьков газа, образующихся на вспомогательном электроде. Подпитка контура осуществляется за счет фильтрационного потока воды через диафрагму из основной электродной камеры во вспомогательную под действием перепада давления. При работе реактора в подобных схемах давление в камере основного электрода необходимо поддерживать в пределах 10-150 кПа (0,1-1,5 кгс/см), что обеспечивает необходимый перепад давления на диафрагме и поддерживает фильтрационную подпитку контура вспомогательного электролита. Щелочь в растворе вспомогательного электролита синтезируется в процессе работы реактора. Ее концентрация достигает стационарного состояния равновесия и не изменяется в течение длительного времени. Основными переносчиками заряда во вспомогательной камере являются гидроксид-ионы. Взаимодействуя с ионами гидроксония, образующимися в анодной камере реактора, они обуславливают нейтральную реакцию анолита. С помощью этой схемы можно получать растворы типа АН. На фиг. 3в представлена схема получения католита рН 7-9. Рабочая камера катодная. Эта схема аналогична схеме, приведенной на фиг.3д с тем отличием, что раствор вспомогательного электролита, синтезируемый при работе реактора, является сильнокислотным (рН 1,5), и образующиеся во вспомогательной камере ионы гидроксония нейтрализуют образующиеся в катодной камере гидроксид-ионы, обеспечивая величину рН католита в пределах, разрешенных для питьевой воды. С помощью этой схемы можно получать растворы типа КН. На фиг.3г представлена схема получения кислотного анолита. Она отличается от схемы, приведенной на фиг.3а тем, что позволяет до минимальной величины уменьшить количество сбрасываемого из камеры вспомогательного электролита (катодной) отработанного раствора вспомогательного электролита. Это достигается благодаря наличию замкнутого контура циркуляции через катодную камеру вспомогательного электролита, который извне подпитывается раствором вспомогательного электролита. Отличие схемы на фиг. 3г от схемы на фиг.3б состоит в том, что через циркуляционный контур вспомогательного электролита, в котором скорость перемещения раствора определяется интенсивностью газовыделения на электроде, постоянно с очень малой скоростью протекания растворов вспомогательного электролита вводится свежий и удаляется отработанный растворы. Раствор вспомогательного электролита может подаваться с помощью дозатора непосредственно перед вводом в циркуляционный контур. В качестве электролита для приготовления вспомогательного раствора используется преимущественно хлорид натрия. Отбор отработанного вспомогательного электролита из циркуляционного контура производится примерно с тем же объемным расходом, что и подпитка. Обычно объемный расход удаляемого отработанного вспомогательного электролита меньше объемного расхода, производимого в реакторе, анолита в 100-1000 раз. Сброс отработанного раствора вспомогательного электролита осуществляют по отдельной линии или вместе с газом. В последнем случае газоотделитель не используется и заменяется штуцером с относительно малым проходным сечением. Регулирование электромиграционных потоков через диафрагму производится так же, как и в схеме на фиг.3а изменением давление в рабочей камере. По этой схеме можно получать растворы типа А, а также промежуточные между А и АН, что достигается регулированием объемного расхода сбрасываемого отработанного электролита. Схема на фиг.3д получение щелочного католита. Эта схема аналогична схеме, приведенной на фиг.3г, с тем отличием, что камерой вспомогательного электролита, замкнутой на циркуляционный контур, является анодная камера реактора, а рабочей камерой катодная. По этой схеме можно получать растворы типа К, а также промежуточные между К и КН, что достигается, как и в предыдущем случае, регулированием объемного расхода сбрасываемого отработанного вспомогательного электролита. Электрические соединения ячеек между собой осуществляются в соответствии с типовыми схемами, приведенными на фиг.4. Рекомендованные схемы электрических соединений ячеек в устройстве в зависимости от выходных параметров источников тока приведены в табл.2. Последовательное электрическое соединение ячеек является более предпочтительным, поскольку через все ячейки протекает ток одинаковой силы вне зависимости от различия их сопротивления, а также потому, что значительной электрохимической мощности можно достичь, не подводя к реактору провода большого сечения. На основе предложенного устройства для электрохимической обработки воды созданы различные установки. Установка СТЭЛ-4Н предназначена для получения моющего или дезинфицирующего (стерилизующего) растворов с водородным показателем, близким к нейтральному значению из пресной (с минерализацией 0,8-1,0 г/л и содержанием хлорид-ионов не менее 300 мг/л) или слабосолоноватой (1,0-3,0 г/л) воды. В результате электрохимических реакций в катодной камере католит насыщается высокоактивными веществами, придающими ей восстановительные свойства и высокую адсорбционную активность (ОН-, Н3О2-, Н2, НО2, НО2-, О2-), т.е. превращается в эффективный моющий раствор. Водородный показатель католита не выходит за пределы, предусмотренные ГОСТ-2874-84 "Вода питьевая. Гигиенические требования и контроль за качеством". При получении дезинфицирующего (стерилизующего) раствора основной поток воды направляется в анодную камеру, а небольшая часть в катодную, откуда поступает на сброс. Вода в анодной камере (анолит) обогащается высокоактивными веществами, придающими ей окислительные свойства (Cl2O, ClO2, HClO, Cl-, O-, O2, O3, HO2, OH-), т.е. превращается в биоцидный раствор. Водородный показатель анолита также на выходит за пределы, разрешенные ГОСТ-2874-82 для питьевой воды. Отличие между дезинфицирующим и стерилизующим растворами состоит в методе использования одного и того же анолита: времени экспозиции, способе обработки объектов (полное погружение или протирание поверхностей) и т.д. Растворы обладают наивысшей активностью в первые часы после получения и теряют ее на 20% через 20-25 ч в результате самопроизвольного распада неустойчивых соединений и частиц. Высокая функциональная способность растворов сочетается с их экологической чистотой и безопасностью. Моющий, дезинфицирующий и стерилизующий растворы, полученные в установке СТЭЛ-4Н, могут использоваться для предстерилизационной очистки, дезинфекции и стерилизации изделий медицинской техники в соответствии с методическими рекомендациями. Установка СТЭЛ-4Н может использоваться также для полного обеззараживания воды. При этом исходная вода пропускается через анодную камеру с объемным расходом не менее 100 л/ч при токе 3-5 А. В результате такой обработки вода с высокой степенью бактериального загрязнения становится стерильно чистой и сохраняется в таком состоянии длительное время. Установка СТЭЛ-10 АК предназначена для получения слабощелочного моющего и слабокислотного дезинфицирующего (стерилизующего) раствора из пресной (с общей минерализацией 0,8-1 г/л) и содержанием хлорид-ионов не менее 300 мг/л) или слабосолоноватой (до 3 г/л) воды, в лечебно-профилактических, санитарно-эпидемиологических учреждениях и предприятиях коммунально-бытового обслуживания. В результате электрохимических реакций вода в катодной камере (католит) насыщается высокоактивными веществами, придающими ей щелочные свойства и восстановительную активность (NaOH, OH-, H3O2-, Н2, HO2-, O2-), т. е. превращается в эффективный моющий раствор. Вода в анодной камере (анолит) обогащается высокоактивными веществами, придающими ей кислотные свойства и окислительную возможность (Cl2O, ClO2, HClO, Cl2, Cl, ClO2-, O2, O3, HO2, OH-), т.е. превращается в дезинфицирующий (стерилизующий) раствор. Отличие между дезинфицирующим и стерилизующим растворами состоит в методике использования одного и того же анолита, т.е. времени экспозиции, способа обработки объектов (полное погружение или протирание поверхности) и т.д. Растворы обладают наивысшей активностью в первые часы после получения и теряют ее на 20% через 20-25 ч в результате самопроизвольного распада неустойчивых соединений и частиц. Высокая функциональная активность растворов сочетается с их экологической чистотой и безопасностью. Моющие, дезинфицирующие и стерилизующие растворы, полученные на установке СТЭЛ-10АК, могут использоваться для предстерилизационной очистки, дезинфекции и стерилизации изделий медицинской техники и фармацевтической посуды в соответствии с методическими рекомендациями. В табл. 3 представлены технические характеристики устройств с различным числом электролитических ячеек. Предложенное решение по сравнению с прототипом при достижении одинакового результата, более просто в изготовлении, так как отсутствуют детали, трудоемкие в изготовлении и сборке (диэлектрические втулки по прототипу имеют большее число каналов и меньше степеней свободы при установке). Устройство имеет более простую и эффективную систему гидравлической обвязки, которая не включает в себя использование многовходовых кранов. Так же необходимо отметить, что функциональные возможности предложенного устройства шире, за счет конструктивных особенностей, т.е. использования унифицированных блоков, что позволяет собирать установки различной производительности в зависимости от условий решаемых задач. По сравнению с прототипом предложенное устройство в 5-6 раз меньше потребляет энергии, имеет меньшие габаритные размеры и в 10 раз меньшую массу.
Формула изобретения

где K межэлектродное расстояние, мм;
L длина рабочей части электродной камеры, мм;
Ds внутренний диаметр цилиндрического электрода, мм;
Db диаметр средней части стержневого электрода, мм;
Ss, Sb площади поперечного сечения камер соответственно цилиндрического и стержневого электродов, м2,
в верхней и нижней частях цилиндрического электрода выполнены отверстия для отвода и подачи обрабатываемой воды в камеру цилиндрического электрода, стержневой электрод выполнен переменного сечения и диаметр его концевых частей составляет 0,75 диаметра его средней части, причем стержневой электрод установлен так, что его средняя часть расположена на уровне, ограниченном отверстиями в верхней и нижней частях цилиндрического электрода. 2. Устройство по п. 1, отличающееся тем, что втулки и цилиндрический электрод выполнены с одинаковыми внешними диаметрами, на поверхности цилиндрического электрода соответственно над отверстием в нижней части и под отверстием в верхней части и на поверхности втулок соответственно под и над отверстиями каналов выполнены канавки, приспособления для подвода и отвода воды выполнены соответственно в виде нижнего и верхнего коллекторов из диэлектрического материала с цилиндрическими гнездами в каждом и подводящими и отводящими каналами, ячейка жестко закреплена в гнездах с помощью упругих прокладок, размещенных в канавках втулок и цилиндрического электрода, причем подводящие и отводящие каналы ячейки и коллекторов соединены гидравлически. 3. Устройство по пп.1 и 2, отличающееся тем, что на поверхности цилиндрического электрода и на боковых поверхностях втулок выполнены кольцевые углубления, в которых расположены отверстия для ввода и вывода воды. 4. Устройство по пп.1 3, отличающееся тем, что каждый коллектор содержит более одного гнезда, причем ячейки, установленные в гнездах, соединены параллельно гидравлически, а узел коммутации соединен с электродами всех ячеек. 5. Устройство по пп.1 4, отличающееся тем, что коллекторы выполнены в виде сборной конструкции из блоков, имеющих по одному гнезду, и снабжены средствами для герметизации и стягивания конструкции. 6. Устройство по пп.1 5, отличающееся тем, что ячейки электрически соединены последовательно, или параллельно, или последовательно параллельно. 7. Устройство по пп.1 6, отличающееся тем, что оно содержит регуляторы расхода, установленные на линии подачи и/или на линии отвода воды из электродных камер.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7