Теплосчетчик
Использование: измерение количества тепла, выданного потребителю, в том числе и при условии неравенства расходов жидкого теплоносителя в прямом и обратном трубопроводах. Сущность изобретения: устройство содержит два датчика температуры с электрическим выходом, два расходомера с частотным выходом, установленных в прямом и обратном трубопроводах, два преобразователя НАПРЯЖЕНИЕ-ЧАСТОТА ИМПУЛЬСОВ, два формирователя импульсов, два элемента И, схему вычитания числоимпульсных кодов, включающую преобразователь КОД-ЧАСТОТА ИМПУЛЬСОВ и реверсивный счетчик, суммирующий счетчик. 3 ил.
Изобретение относится к теплотехническим измерениям и может быть использовано для измерения количества теплоты, выданной системой теплоснабжения потребителю.
Известно устройство для измерения количества теплоты в системах теплоснабжения, содержащее расходомер с частотным выходом, соединенный со входом формирователя импульсов, мостовую схему с токовым источником питания и последовательно соединенными термопреобразователями сопротивления прямого и обратного потоков, подключенными к питающей диагонали мостовой схемы, выходная диагональ которой через усилитель соединена с входом преобразователя напряжения частота импульсов, элемент И (вентильная схема), первый вход которого подключен к выходу формирователя импульсов, второй вход к выходу преобразователя напряжение частота, а выход соединен со входом счетчика [1] Известный теплосчетчик обеспечивает измерение количества теплоты, выданной потребителю, в замкнутых системах теплоснабжения при условии равенства расходов жидкого теплоносителя в прямом и обратном трубопроводах. В то же время опыт эксплуатации замкнутых систем теплоснабжения (например, отопительных сетей коммунального хозяйства) свидетельствует о повсеместном невыполнении этого условия. Из-за неудовлетворительного технического состояния распределительных сетей на территории потребителя тепла, в том числе и за счет несанкционированного отбора теплоносителя из тепловых сетей, объем возвратного потока практически всегда существенно меньше объема прямого потока, что требует постоянной "подпитки" отопительных сетей "холодным" теплоносителем. Для повышения точности учета количества теплоты, выданной потребителю, настоятельно необходим теплосчетчик, работающий в том числе и в условиях неравенства расходов жидкого теплоносителя в прямом и обратном трубопроводах, т.е. в условиях, когда возвратный поток меньше прямого. Наиболее близким к изобретению по технической сущности и достигаемому техническому результату является теплосчетчик, содержащий первый и второй датчики температуры с электрическим выходом, установленные в прямом и обратном трубопроводах, первый и второй расходомеры с частотным выходом, подключенные к первому и второму формирователям импульсов, первый преобразователь "напряжение частота импульсов", и реверсивный и суммирующий счетчики [2] Известный теплосчетчик учитывает температуру и расход теплоносителя в прямом и обратном трубопроводах, однако обладает невысокой эксплуатационной надежностью из-за использования схемы управления и внутренней синхронизации работы его элементов с контактными ключами. Технический результат, обеспечиваемый изобретением, состоит в упрощении и повышении его эксплуатационной надежности. Указанный результат достигается введением в известное устройство второго преобразователя "напряжение частота импульсов", первого и второго элементов И и преобразователя "код-частота импульсов". На фиг. 1 приведена структурная схема предлагаемого теплосчетчика; на фиг. 2 схема преобразователя "напряжение частота"; на фиг. 3 схема преобразователя "код частота". Теплосчетчик содержит первый 1-1 и второй 1-2 датчики температуры с электрическим выходом, установленные в прямом и обратном трубопроводах, соответственно, первый 2-1 и второй 2-2 расходомеры с частотным выходом, первый 3-1 и второй 3-2 преобразователи "напряжение частота импульсов", первый 4-1 и второй 4-2 формирователи импульсов фиксированной длительности, первый 5-1 и второй 5-2 элементы И, преобразователь 6 "код частота импульсов", реверсивный двоичный счетчик 7 и суммирующий счетчик 8. При этом выходы первого 1-1 и второго 1-2 датчиков температуры соединены со входами первого 3-1 и второго 3-2 преобразователей "напряжение частота", выходы которых соединены с первыми входами первого 5-1 и второго 5-2 элементов И, выходы первого 2-1 и второго 2-2 расходомеров соединены со входами первого 4-1 и второго 4-2 формирователей импульсов, выходы которых соединены со вторыми входами первого 5-1 и второго 5-2 элементов И, выходы первого 5-1 и второго 5-2 элементов И соединены с частотным входом преобразователя 6 "код частота импульсов" и суммирующим входом реверсивного счетчика 7, многоразрядный выход которого соединен со входом задания частоты преобразователя 6 "код частота импульсов", первый и второй выходы которого соединены с вычитающим входом реверсивного счетчика 7 и счетным входом суммирующего счетчика 8. Датчик 1-1 (1-2) температуры с электрическим выходом может быть выполнен в виде последовательно соединенных термопреобразователей сопротивления и опорного резистора, включенных в мостовую измерительную схему. В качестве расходомера 2-1 (2-2) с частотным выходом может быть использован объемный счетчик количества жидкости, допоненный преобразователем частоты вращения турбинки в выходную последовательность коротких импульсов. Преобразователь 3-1 (3-2) напряжение частота (см.фиг.2) может быть выполнен по схеме, содержащей последовательно соединенные коммутатор 9 полярности преобразуемого напряжения, интегратор 10 и компаратор 14, выход которого соединен с управляющим входом коммутатора 9, и дополненной формирователем 12 коротких импульсов с длительностью десятки НС для обеспечения устойчивой работы реверсивного счетчика 7 в режиме счета двух несинхронизированных последовательностей импульсов. Преобразователь 6 "код частота импульсов" (см.фиг.3) может быть выполнен по схеме двоичного умножителя, содержащей программный счетчик 13 и комбинационные элементы И-ИЛИ 14 и ЗАПРЕТ ИЛИ 15, с двумя выходами: прямого потока импульсов с частотой fx1 x








































Это условие необходимо для образования разности частот




fx1=












Следовательно, на втором выходе преобразователя 6 образуется разность между входным потоком с частотой





Подставляя в (3) значения средних частот























Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3