Косвенный способ определения формы одиночных сверхкоротких световых импульсов

 

Косвенный способ определения формы одиночных сверхкоротких световых импульсов предназначен для использования в системах контроля дальномеров. Сущность: формируют первый и второй оптические сигналы расщеплением исходного сверхкороткого импульса, первый из которых обращают во времени, сводя первый и второй оптические сигналы в нелинейном кристалле, на котором получают излучение генерации второй гармоники, при этом из первого и второго оптических сигналов формируют сигналы спектрона исходного оптического импульса, а регистрируют динамическую спектрограмму сигнала излучения второй гармоники, по которой судят о форме одиночного сверхкороткого светового импульса. 1 ил.

Изобретение относится к технической физике, в частности к методам измерения временных параметров лазерных импульсов, например, в системах контроля особо точных дальномерных систем.

Известен способ определения формы сверхкороткого импульса, основанный на измерении корреляционной функции интенсивности третьего порядка при каскадной генерации третьей гармоники исходного СКИ [1] где показано, что поперечное пространственное распределение интенсивности третьей гармоники соответствует корреляционной функции интенсивности третьего порядка, что позволяет определить форму СКИ.

Однако низкая эффективность генерации третьей гармоники по сравнению с генерацией второй гармоники затрудняет практическое использование этого способа при работе с маломощными лазерами.

Наиболее близким к изобретению является способ определения формы СКИ с помощью измерения автосвертки при генерации второй гармоники исходным и обращенным во времени импульсами [2] Обращение формы СКИ предлагается реализовать в системе, состоящей из линейных диспергирующих элементов и частотно-моделирующего устройства. При этом для компенсации постоянного во времени чирпа, введенного линейным диспергирующим элементом, и дальнейшего обращения знака чирпа рекомендуется использовать эффект фазовой самомодуляции, имеющий место при распространении СКИ в нелинейной среде, например в оптическом волокне.

Недостатком известного способа являются временные искажения, обусловленные следующими причинами. Постоянный во времени чирп при самовоздействии возникает только в центральной части импульса, на фронтах импульса образуется зависящий от времени чирп, компенсация которого линейными оптическими диспергирующими элементами невозможна. При распространении СКИ в оптическом волокне протекают конкурирующие нелинейные процессы, пороги которых близки к порогу эффекта самомодуляции или даже ниже последнего, а эти процессы вносят необратимые искажения подлежащей определению огибающей СКИ. В прототипе предполагается, что исследуемый СКИ имеет плоский фазовый эффект, который сохраняется после всех преобразований в системе диспергирующий элемент частотный модулятор диспергирующий элемент, а реальные СКИ пространственно ограничены, и, следовательно, это предложение значительно затрудняет процесс определения формы реальных СКИ.

Целью изобретения является повышение точности определения формы одиночного СКИ с одновременным определением спектра СКИ путем измерения автосвертки временного спектрона СКИ.

Цель достигается тем, что по способу определения формы СКИ, по которому СКИ расщепляют, часть его пропускают через систему обращения, затем регистрируют автосвертку, полученную при неколлинеарной генерации второй гармоники в нелинейном кристалле, с целью повышения точности определения формы одиночного СКИ с единовременным определением фазы СКИ формируют сигналы, являющиеся спектронами исходного СКИ, пропуская, например, одну часть исходного СКИ через линейную диспергирующую среду с положительной дисперсией, а другую часть через линейную среду с отрицательной дисперсией, затем излучение второй гармоники, представляющее собой автосвертку спектрона, направляют на спектрограф, регистрируют динамическую спектрограмму, с помощью которой определяются форма и фаза одиночного СКИ. Реализация линейной системы формирования взаимообращенных временных спектронов приводит к тому, что в отличие от прототипа, где обращенный во времени СКИ обладает искажением, поскольку постоянный во времени чирп при самовоздействии возникает только в центральной части импульса, а на фронтах импульса образуется зависящий от времени чирп, компенсация которого линейными оптическими диспергирующими элементами невозможна, уменьшаются временные искажения, имеющие место во "временной линзе", работающей на основе фазовой самомодуляции, повышается точность определения формы одиночного СКИ и появляется возможность определения спектра одиночного СКИ. По заявляемому способу измеряют функцию автосвертки временного спектрона СКИ при неколлинеарной генерации второй гармоники взаимообращенными временными спектронами, определяют фазу временного спектрона СКИ с помощью введенного спектрографа, установленного на выходе нелинейного кристалла, и по измеренной форме временного спектрона СКИ восстанавливают форму исследуемого СКИ. Причем взаимообращенные временные спектроны СКИ можно получить с помощью линейных диспергирующих элементов с противоположными знаками дисперсии групповых скоростей.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ соответствует критерию изобретения "Новизна".

Известно техническое решение, в котором определяют форму одиночного СКИ при каскадной генерации третьей гармоники исследуемого СКИ. Однако при этом временное разрешение ограничивается дисперсионным расплыванием СКИ в нелинейном кристалле. Улучшение временного разрешения достигается в заявляемом техническом решении, поскольку форму одиночного СКИ определяют при неколлинеарной генерации второй гармоники взаимообращенными временными спектронами, полученными из исследуемого СКИ. Это позволяет сделать вывод о соответствии заявляемого решения критерию "Существенные отличия".

В квазистатическом режиме неколлинеарной генерации второй гармоники пространственно ограниченными взаимообращенными временными спектронами при отсутствии двулучепреломления распределение энергии второй гармоники представляет собой произведение функций автосвертки временного профиля спектрона и квадрата функции автокорреляции поперечного распределения спектрона. Распределение энергии второй гармоники соответствует функции автосвертки временного профиля, когда поперечный размер спектрона больше продольного. Очевидно, что влияние двулучепреломления может быть исключено при распространении излучения удвоенной частоты в направлении, нормальном к оптической оси кристалла. Квазистатический режим неколлинеарной генерации второй гармоники взаимообращенными спектронами практически всегда имеет место, поскольку длительность временного спектрона СКИ больше длительности СКИ. При неколлинеарной генерации второй гармоники взаимообращенными спектронами имеется линейная связь между величиной углового расхождения излучения второй гармоники и спектром временного спектрона СКИ. Следовательно, при неколлинеарной генерации второй гармоники взаимообращенными временными спектронами в поперечном распределении энергии второй гармоники содержится информация как о форме спектрона, так и о спектральном составе спектрона. Если излучение второй гармоники с выхода нелинейного кристалла направляется на спектрограф, щель которого ориентирована вдоль поперечного распределения энергии второй гармоники, которое несет в себе информацию об автосвертке, то на выходе спектрографа получается зависимость несущей частоты спектрона от времени (t), т.е. фаза спектрона Sdt. Спектральное разрешение нелинейного кристалла при неколлинеарной генерации второй гармоники взаимообращенными спектронами можно увеличить при использовании временных спектронов с наклонным фронтом волнового возмущения. Амплитуду временного спектрона определяют из кривой автосвертки спектрона, а фазу из динамической спектрограммы. С помощью обратного преобразования Фурье по определенной форме временного спектрона СКИ восстанавливается форма исследуемого одиночного СКИ. Взаимообращенные временные спектроны можно получить с помощью оптических диспергирующих устройств с противоположными знаками дисперсии групповых скоростей. При этом необходимо, чтобы имело место равенство по абсолютному значению между значениями чирпа, введенными диспергирующими устройствами с противоположными знаками дисперсии. Устройство, состоящее из двух плоских параллельно расположенных дифракционных решеток, может быть использовано в качестве оптического диспергирующего элемента с отрицательной дисперсией групповых скоростей. Устройство, состоящее из двух плоских дифракционных решеток и установленного между ними телескопа, может быть использовано в качестве оптического диспергирующего элемента с положительной дисперсией групповых скоростей Предельное временное разрешение определяется дисперсионным расплыванием дифрагированного на дифракционной решетке импульса, обусловленного конечным размером пучка, дисперсией показателя преломления линз телескопа и составляет 50-70 фс.

На чертеже представлена оптическая схема установки, реализующий алгоритм определения формы одиночного СКИ по кривой автосвертки временного спектрона СКИ.

Входной пучок исследуемого излучения расщепляется светоделителем 2 на две части, которые попадают в оптические диспергирующие устройства с противоположными знаками дисперсий, на выходе которых получаются взаимообращенные временные спектроны. Попадая на нелинейный кристалл 9, взаимообращенные спектроны генерируют излучение второй гармоники, которое попадает на дифракционную решетку 10. Дифрагированное излучение второй гармоники регистрируется на фотопленке 11. Таким образом, на фотопленке регистрируется динамическая спектрограмма, содержащая информацию как об амплитуде, так и фазе временного спектрона.

Установка, кроме того, содержит идентичные дифракционные решетки 3,4,5 и 8, линзы 6 и 7 телескопа, глухое зеркало 12, источник 1 СКИ.

Конкретная реализация способа была осуществлена следующим образом. В оптических диспергирующих устройствах с противоположными знаками дисперсии используют идентичные дифракционные решетки со следующими параметрами: размер 60 х 60 мм, постоянная решетки 1200 шт./мм. Эксперимент проводится при работе на первом порядке дифракции. В диспергирующем устройстве с положительной дисперсией используют телескоп с одиночным увеличением. Диаметр линз телескопа 80 мм, фокусное расстояние 180 мм. В качестве светоделителя используют зеркало с 50%-ным отражением. В качестве нелинейного кристалла используют кристалл йодата лития толщиной 7 мм. Спектрограф с обратной дисперсией 0,5 нм/мм на длине волны 0,53 мкм собран на основе дифракционной решетки 1200 шт./мм размером 60х60 мм. Фотографирование пространственного распределения интенсивности второй гармоники проводится камерой "Зенит-Е". Источником СКИ служит лазер на алюмоиттриевом гранате ЛП-3 длиной волны излучения 1,06 мкм с одним каскадом усиления. В режиме генерации цуга пикосекундных импульсов последующее выделение одиночного СКИ из цуга осуществляют затвором на поперечном электрооптическом эффекте. Ориентировочная длительность одиночного СКИ 20 пс. Расстояние между дифракционными решетками в устройстве с отрицательной дисперсией равно удвоенному расстоянию между решеткой и линзой в устройстве с положительной дисперсией.

Использование способа наиболее эффективно для СКИ, у которых девиация мгновенной частоты менее ширины спектра, определяемой длительностью огибающей.

Использование предлагаемого способа определения формы одиночных СКИ обеспечивает по сравнению с существующими способами следующие преимущества. Определение формы одиночного СКИ путем измерения автосвертки временного спектрона исследуемого СКИ приводит к существенному повышению временного разрешения. Кроме того, вследствие неколлинеарной генерации второй гармоники взаимообращенными спектронами становится возможным определение спектрального состава исследуемого излучения.

Формула изобретения

КОСВЕННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ФОРМЫ ОДИНОЧНЫХ СВЕРХКОРОТКИХ СВЕТОВЫХ ИМПУЛЬСОВ, заключающийся в том, что формируют первый и второй оптические сигналы расщеплением исходного светового сверхкороткого импульса, первый из которых обращают во времени, сводя первый и второй оптические сигналы в нелинейном кристалле, на котором получают излучение генерации второй гармоники и регистрируют форму полученного импульса, отличающийся тем, что из первого и второго оптических сигналов формируют сигналы спектрона исходного светового сверхкороткого оптического импульса, например, пропусканием первого сигнала через линейную диспергирующую среду с положительной дисперсией, а второго сигнала через линейную среду с отрицательной дисперсией, излучение генерации второй гармоники направляют на спектрограф и регистрируют динамическую спектрограмму сигнала излучения второй гармоники, по которой судят о форме и фазе одиночного сверхкороткого светового импульса.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технике измерений, в частности к измерению спектральных характеристик оптического излучения, например ширины спектральной линии лазерного излучения

Изобретение относится к фотометрии и может быть использовано в измерительной технике, автоматике и оптической электронике

Изобретение относится к космической технике, конкретно к способам определения теплофиэических характеристик космического аппарата (КА), и предназначено для оценки величины изменения термооптических характеристик терморегулирующих покрытий радиаторов-излучателей систем терморегулирования в условиях космического полета

Изобретение относится к области пирометрии и может быть использовано для определения коэффициентов излучательной способности и температур тел

Изобретение относится к физике плазмы, а именно к способам измерения электронной температуры плазмы, создаваемой лазерным излучением на мишенях из проводников

Изобретение относится к измерительной технике, а именно к способам и устройствам для определения коэффициентов излучательной способности внутренних поверхностей неоднородно нагретой полости, и может быть использовано в металлургической, химической, электронной, авиационной и других отраслях промышленности
Изобретение относится к оптико-электронному приборостроению, в частности к ИК термографии (или тепловидению)

Пирометр // 2437068
Изобретение относится к технике измерения физической температуры объекта по его тепловому радиоизлучению

Изобретение относится к области оптической пирометрии и касается способа измерения распределения температуры на поверхности объекта. Способ включает формирование на выбранной частоте цифрового изображения объекта за счет испускаемого объектом теплового излучения и получение дополнительного цифрового изображения того же объекта, освещенного рассеянным излучением. По двум полученным изображениям и освещенности поверхности объекта вычисляют коэффициенты отражения рассеянного излучения в направлении объектива видеокамеры в точках измерения температуры на выбранной частоте и по полученным коэффициентам и первому изображению вычисляют распределение температуры. Технический результат заключается в упрощении способа измерений и обеспечении возможности измерения температуры без получения предварительных сведений о свойствах объекта. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области фотометрии и касается способа учета влияния нестабильности лазера при воспроизведении и передаче единицы мощности. При проведении измерений используют два измерительных преобразователя, постоянные времени которых отличаются не менее чем на два порядка. По выходным сигналам преобразователей определяют импульсные функции измерительных преобразователей и вычисляют свертку сигнала от измерительного преобразователя с меньшей постоянной времени с импульсной функцией измерительного преобразователя с большей постоянной времени. Затем вычисляют коэффициент пропорциональности между функцией измерительного преобразователя с большей постоянной времени и результатом полученной свертки. За коэффициент передачи единицы средней мощности принимают вычисленный коэффициент пропорциональности. Технический результат заключается в повышении точности измерения в условиях нестабильного лазерного излучения. 1 ил.

Изобретение относится к области бесконтактного измерения температуры и касается способа спектрально-яркостной пирометрии объектов с неоднородной температурой поверхности. Способ включает в себя регистрацию изображения участка поверхности излучающего объекта на выбранной длине волны и измерение спектра суммарного теплового излучения того же участка поверхности объекта в диапазоне, включающем выбранную длину волны. По зарегистрированному изображению определяют все уровни сигнала, соответствующие элементам поверхности объекта. По измеренным значениям уровня сигнала зарегистрированного изображения определяют опорный уровень сигнала, который соответствует опорному значению температуры. Значение опорной температуры вычисляют по зарегистрированному спектру излучения. Далее множество температур элементов поверхности объекта вычисляют по математической формуле, полученной с использованием формулы Вина. Технический результат заключается в повышении автономности, быстродействия и пространственного разрешения. 6 ил.
Наверх