Способ приготовления смеси для получения композиционного материала и изделия из композиционного материала
Изобретение относится к способу изготовления смеси на основе цемента, содержащей волокна усиления, и к изделиям, полученным данным способом. Сущность изобретения: способ заключается в формировании теста, замешанного на цементе, при этом на 100 мас.ч. цемента берут 5 - 20 мас.ч. первого сыпучего материала, средний диаметр гранул которого составляет 1/5 - 1/10 среднего диаметра гранул цемента, 20 - 35 мас.ч. воды и по меньшей мере одну добавку (разжижитель, сократитель воды или диспергатор), затем замешивают тесто, добавляя по меньшей мере один вид волокон усиления. Изобретение находит широкое применение в области строительных материалов на основе фиброцемента. 2 с. и 5 з.п. ф-лы, 4 табл.
Изобретение представляет собой способ изготовления смеси на основе цемента, содержащем фиброволокна усиления, и продукты, полученные этим способом.
Изобретение находит главное, но не исключительное применение в области материалов из этернита фиброцемента, которые используются в строительстве зданий для изготовления элементов кровельного покрытия, облицовочной плитки или фасадных стеновых панелей, барельефов и т.д. Известен способ усиления цемента за счет волокон различных типов. Интерес к армированию строительного материала на основе неорганических веществ для придания ему пластичности и лучшей прочности при растяжении возник очень давно, что доказывает широкая известность таких материалов, как саман или железобетон. Издавна велись изыскания по упрочнению цементных растворов с помощью волокон. Например, промышленное исполь- зование асбестового волокна как усилителя цемента датируется началом века. Однако, после открытия в 1960-е годы риска возрастания раковых заболеваний (при работе с асбестовым волокном и его вдыхании паров) началось использование других видов волокон для усиления цемента. Среди них можно упомянуть стальные волокна, волокна из чугуна, целлюлозы, стекловолокно, полипропиленовые и другие синтетические волокна, натуральные, джутовые волокна, бамбуковые волокна и т.д. Однако использование подобных волокон не получило развития, так как возникли проблемы получения смесей цемент-волокна. Известные способы фильтрования, пропитки, выбрасывания или примешивания волокон в момент замешивания цемента (способ ПРЕМИКС) обладают недостатками, которые ограничивают их применение. Например, процесс изготовления смеси цемент-волокно путем фильтрации цемента через волокна подходит не ко всем видам волокон. Волокна должны быть достаточно тонкими, чтобы сформировать эффективный фильтр и обладать достаточным средством с водой, что совершенно исключает использование стекловолокна. Необходимость прессования готовых деталей исключает возможность изготовления с крупным рельефом. Более того для фильтрации необходима система подачи и удаления воды, что приводит к значительным затратам. Что касается способа изготовления смеси цемент-волокно путем пропитки, то он очень длительный и трудоемкий в реализации, что делает его дорогостоящим. Приготовление смеси цемента и волокон путем выбрасывания цемента и волокон на форму или на стенку подходит не ко всем видам волокон точно так же, как и способ фильтрации. Волокна должны обладать определенной массой и такими техническими данными, чтобы их можно было наносить на плоскость. Речь в данном случае идет о дорогих волокнах, которые требуют особого изготовления. Нанесение цементного теста требует затрат большого количества воды, из-за чего возникают проблемы старения изделия, полученного этим способом, и менее удовлетворительных конечных характеристик. Впрочем, способ набрызгивания из-за сложностей в изготовлении требует использования высококвалифицированной рабочей силы. Наконец, способ, состоящий в подмешивании фиброволокон к цементу в момент замеса цемента (способ, называемый ПРЕМИКС), тот, который использовался ранее, значительно ограничивает процентное содержание волокон, добавляемых в цементное тесто. Увеличение вязкости смеси за счет добавления волокна в общем компенсируется начальным наличием большого количества воды. Таким образом, здесь также проявляются недостатки способа изготовления путем набрызгивания, приводящего к тому же, как известно, к менее удовлетворительным параметрам выходного изделия. Для способа типа PREMIX, так же как и для способа набрызгивания, необходима квалицифированная рабочая сила. Следует отметить также, что способ PREMIX используется для малосерийного производства. Целью изобретения является возможность использования всех видов волокон усиления в процессе изготовления смеси на основе цемента, армированного волокнами усилия, и изделий, полученных из такой смеси, что позволяет полнее отвечать практическим требованиям. Изготовленные изделия обладают большой плотностью и хорошими конечными характеристиками, а также хорошей прочностью на изгиб, на сжатие: способ легко осуществим на практике, обеспечивает возможность легкой формовки смеси и отличается приемлемой стоимостью. Изобретение базируется на результатах изобрететалей о том, что смесь волокон и цемента можно намного улучшить, если изготовлять плотное тесто на основе цемента при следующих процентных соотношениях: на 100 мас.ч. цемента берут 5-20 мас.ч. первого заполнителя, представляющего собой сыпучий материал, средний диаметр гранул которого составляет 1/5-1/10 среднего диаметра гранул цемента, и 20-35 мас.ч. воды, подмешивая затем по меньшей мере один вид волокон усиления в полученное таким образом тесто. Данный способ совершенно отличается от способов типа PREMIX, использовавшихся ранее, двумя чертами: порядком этапов, который в изобретении следующий: смешивание порошков и замешивание, затем добавление волокон, а также малым количеством используемой воды по сравнению с обычно используемым. Для достижения цели изобретением предлагается сособ изготовления смеси на основе цемента, содержащей волокна усиления, отличающийся тем, что цементное тесто формируют в следующем соотношении: на 100 мас.ч. цемента берут 5-20 мас. ч. первого сыпучего матерала, средний диаметр гранул которого составляет 1/5-1/10 среднего диаметра гранул цемента, около 20-35 мас.ч. воды и по меньшей мере одну добавку (разжижитель, уменьшитель количества воды или диспергатор), а затем замешивают в указанное тесто по меньшей мере один вид волокон усиления. В предпочтительных способах реализации изобретения смешивание производят согласно одному и/или другому из приведенных приемов: формируют тесто в следующем соотношении: на 100 мас.ч. цемента берут 20-30 мас.ч. воды; на 100 мас. ч. цемента замешивают в тесто 2-18 мас.ч. волокон усиления; формируют тесто, добавляя, кроме цемента и первого сыпучего материала, второй сыпучий материал в следующем соотношении: на 100 мас.ч. цемента берут до 5 мас.ч. второго сыпучего материала, средний диаметр гранул которого составляет 1/5-1/10 среднего диаметра гранул первого сыпучего материала; формируют тесто, добавляя на 100 мас. ч. цемента до 4 мас.ч. пластичной добавки (наиболее предпочтительно добавлять 2-3 части последней); формируют тесто, добавляя на 100 мас.ч. цемента до 1 мас.ч. пластифицирующего продукта; формируют тесто, добавляя различные материалы в сухом виде, затем приступают к (перемешиванию) полученной однородной смеси; первый сыпучий материал содержит гранулы средним диаметром 3-20 мк; средний диаметр волокон усиления составляет около 3-30 мк. Одним из преимуществ заявляемого способа является возможность вводить одновременно различ- ные виды волокон. Таким образом, возможно добавлять в состав минеральные волокна или стекловолокно, средний диаметр которых составляет около 10-30 мкм, предпочтительно волокна средним диаметром около 20 мк, и волокна из тех же материалов, средний диаметр которых меньше 5 мкм. Первые улучшают механические свойства композиционного состава (гибкость, растяжение, ударостойкость), вторые улучшают герметичность, сопротивляемость образованию микротре- щин и абразивному износу. Изобретение предлагает также изделие на основе цемента, армированного волокнами усиления, полученный способом, описанным выше, и отличающийся тем, что на 100 мас.ч. цемента берут примеро 5-20 мас.ч. первого сыпучего материала, средний диаметр гранул которого составляет 1/5-1/10 среднего диаметра гранул цемента. Предпочтительно, чтобы изделие, кроме этого, содержало на 100 мас.ч. цемента до 5 мас.ч. второго сыпучего материала, гранулы которого имеют средний диаметр 1/5-1/10 среднего диаметра гранул первого сыпучего материала. В предпочтительном способе реализации в качестве первого сыпучего материала использовать метакаолин, средний диаметр которого 3-20 мкм, в качестве второго сыпучего материала микрокремнезем, волокна усиления содержат стекловолокно. Наглядно преимущества изобретения продемонстированы в нижеследующих объяснениях, а также в приложенных таблицах. Прежде всего в изобретении используются навесные результаты оптимизации соотношений между гранулометрическими составами компонентов бетона, позволяющие улучшить плотность, примененные здесь по-новому к цементному тесту, размер самых крупных гранул которого равен размеру наиболее крупных гранул цемента. Известно, что чем более продукт уплотнен, тем более улучшаются его выходные характеристики физического и механического сопротивления. Промежуточные пространства между гранулами продукта определяют его плотность (или пористость). Итак, смешивая первичный порошок, состоящий из гранул данного среднего диаметра с заполнителем из сыпучего материала, средний диаметр гранул которого меньший, заполняют частично отдельные промежутки между частицами, что приводит к большей плотности получаемого конечного продукта. Именно этот принцип был использован авторами, которые опытным путем обнаружили, что в случае с цементом оптимальные пропорции, которые необходимо соблюдать между средним диаметром гранул цемента и средним диаметром гранул заполнителя из первого сыпучего материала, будут от 1/5 до 1/10 одного по отношению к другому, а добавление другого заполнителя из второго сыпучего материала, для которого отношение средних диаметров, для сыпучих продуктов, идентично отношению между цементом и первым сыпучим материалом, еще более улучшает плотность. Впрочем, авторами также было отмечено, что неожиданным образом соблюдение пропорции между средними диаметрами очень облегчает смешивание с волокнами усиления, что является одним из главных признаков изобретения. На основании результатов, полученных авторами, цифровые величины которых не ограничиваются приведенными в табл. N 1 приведены измерения пористости для двух типичных композиционных составов цементного теста, изготовленных при соблюдении заданных предметов изобретения соотношений между диаметрами гранул это композиционный состав 1 без "второго" сыпучего материала, и композиционный состав 2 со "вторым" сыпучим материалом (в данном случае речь идет об измельченном кремнеземе). Другие измерения с различнымми гранулометрическими составами, тем не менее всегда входящими в пределы "вилок", данных в изобретении, позволили авторам подтвердить указанные пределы. Видно, что после 25-ти циклов погружения (просушки) изделий, полученных из композиционных составов 1 и 2, достигают пористость (измерения проведены пикнометром на гелии), близкую к оптимальной теоретической пористости. Ниже приводятся характеристики материалов, использованных в данных композиционных составах: цемент: искусственный портландцемент СРА 55, средний диаметр гранул около 60 мкм, первый сыпучий материал: метакаолин, средний диаметр 10 мкм, второй сыпучий материал: измельченный кремнезем, средний диаметр 1 мкм, добавка, использованная в качестве уменьшителя воды: сульфонат полинафталена (известный под названием LOMARD). В табл. 2 даны средние теоретические максимальные значения для заполнений сферами гранулометрических классов того же типа, что и композиционные составы 1 и 2. Таким образом, можно констатировать факт, что теоретически заданные характеристики близки к полученным в композционном составе 1 и еще более улучшены в композиционном составе 2, полученная плотность для продуктов изобретения является, таким образом, наиболее оптимальной. Табл. 3 дает композиционный состав различных смесей на основе цемента и волокон усиления. Значения указывают массу в граммах. Из этих смесей изготовлялись изделия, представленные на испытания, результаты которых приведены в табл. 4. Некоторые изделия изготовлены на основе смесей согласно изобретению, а другие не из этих смесей для того, чтобы обеспечить возможность сравнения полученных результатов. Различные смеси, приведенные в табл. 3, были изготовлены из искусственного портландцемента 55. Однако, возможно применение и всех других видов цемента. Наиболее применимы сульфатопуццолановый цемент японского производства, известный на рынке под названием CHICHIRU, или специальные виды цемента, например глиноземистый цемент, изготовленный Компанией Хайдельбергер Цемент (ФРГ). В табл. 3 "первым" сыпучим материалом выступает метакаолин (средним гранулометрическим диаметром приблизительно 5 мкм), имеющий удельную поверхность ВЕТ 15-30 m2/g и результаты испытаний, называемых Испытания CHAPELLE (стандарт BS 6432 от 1984), показывают, что потребляется приблизительно 160 mg CaO/g метакаолина. Под метакаолином подразумевается продукт активной термообработки каолинита, сокращенная формула которого выглядит следующим образом: AS2(A Al2O3 и G6SiO2). Метакаолин получают путем термообработки каолинита при температуре между 700 и 900оС в течение нескольких часов. Разумеется, пригодны и другие виды "первого" сыпучего материала, в которых соблюдаются гранулометрические пропорции по отношению к цементу, указанные в изобретении. Особенно пригодны мел, каолин, глина, доломит, пустотелые минеральные микросферы (средним диаметром приблизительно 30 мкм) или же порошок W.Mastonite (средним диаметром порядка 8-10 мкм), хотя этот перечень ни в чем не ограничивается. "Второй" сыпучий материал, приведенный в табл. 3, состоит из измельченного кремнезема с удельной поверхностью 20 m2/mg и средним диаметром 0,3-3 мкм. Для реализации изобретения могут быть использованы и другие продукты, как, например, графит адекватного гранулометрического состава или измельченное микростекловолокно, средний диаметр которого меньше или равен 3 мкм. Необходимо отметить еще раз, что для получения хороших результатов, для получения возможности реализации изобретения и получения состава с волокнами усиления согласно изобретению, особенно важны "физические" свойства наблюдаемой смеси и продуктов, получаемых из нее. Такие свойства получаются в основном благодаря гранулометрическим соотношениям сыпучих материалов между собой и цементом. Менее важны химические свойства, как, например, пуццолановые свойства, измельченность в большей или меньшей степени первого и второго сыпучих мате- риалов. Добавкой, использованной в составе смеси, указанном в табл. 3, является сульфонат полинафталена, известный под названием LOMAP D. средний диаметр которого около 50 мкм. Также могут быть применены и другие добавки, известные специалисту. В качестве пластификатора смесей из табл. 3, который никоим образом не указывается здесь как ограничивающий, взята карбоксиметилцеллюлоза (СМС), известная под названием BLANOSE (обозначение AKUCELL MS710) средним диаметром около 40 мкм. Наконец, в смесях из табл. 3 фигурируют многочисленные виды стекловолокна, что не ограничивает возможность использования других видов волокон. Употребляемые волокна обозначены буквами: волокна Z1 и Z2, полученные путем вытяжки (из жидкого состояния и вещества), относятся к щелочно-устойчивым стеклам, содержащим оксид циркония. Волокно Z3 является волокном, которое относится к композиционному составу того же вида, получают это волокно механической вытяжкой. Волокна A1 и A2 изготовлены из глиноземисто-магниевого стекла (устойчивого также и к воздействию щелочной среды) путем вытяжки из жидкого состояния, первое волокно применяется в сыром виде, второе подвергается предварительно прочесыванию. Волокна В1 и В2 получены из стекла на основе шлака и базальта двумя равными способами, используя вытяжку из жидкого состояния. Число, следующее из за обозначением волокна, указывает на средний диаметр вышеназванных волокон (или филаментарных волокон), выраженный в мкм. Далее дано обозначение символов, использованных в настоящей заявке, а именно в табл. 4 (обозначения совершенно классические): MOR или













Формула изобретения
1. Способ приготовления смеси для получения композиционного материала путем смешения цемента, микронаполнителя, воды, армирующих волокон и пластифицирующей добавки, отличающийся тем, что сначала готовят цементное тесто из смеси, содержащей на 100 мас.ч. цемента, 5 20 мас.ч. первого микронаполнителя со средним диаметром гранул 1/5 1/10 диаметра гранул цемента, 20 35 мас. ч. воды и 2 4 мас.ч. пластифицирующей добавки, затем в тесто замешивают по крайней мере один вид армирующих волокон в количестве 2 - 18 мас.ч. 2. Способ по п.1, отличающийся тем, что цементное тесто содержит 23 30 мас.ч. воды. 3. Способ по пп.1 и 2, отличающийся тем, что при приготовлении цементного теста дополнительно вводят до 5 мас. ч. второго микронаполнителя со средним диаметром гранул 1/5 1/10 среднего диаметра гранул первого микронаполнителя, при этом на 100 мас.ч. цемента вводят до 5 мас.ч. второго микронаполнителя. 4. Способ по пп.1 3, отличающийся тем, что в качестве первого микронаполнителя используют метакаолин со средним диаметром гранул 3 20 мкм, полученный путем термообработки каолинита при 700 900oС, и в качестве второго микронаполнителя измельченный кремнезем с средним диаметром гранул 0,3 3,0 мкм. 5. Изделие из композиционного материала, полученного путем смешения цемента, микронаполнителя, воды, армирующих волокон и пластифицирующей добавки, отличающееся тем, что сначала готовят цементное тесто из смеси, содержащей на 100 мас.ч. цемента, 5 20 мас.ч. первого микронаполнителя со средним диаметром гранул 1/5 1/10 диаметра гранул цемента, 20 35 мас.ч. воды и 2 4 мас. ч. пластифицирующей добавки, затем в тесто замешивают по крайней мере один вид армирующих волокон в количестве 2 18 мас.ч. 6. Изделие по п.5, отличающееся тем, что при приготовлении цементного теста дополнительно вводят второй микронаполнитель со средним диаметром гранул 1/5 1/10 среднего диаметра гранул первого микронаполнителя, при этом на 100 мас.ч. цемента вводят до 5 мас.ч. второго микронаполнителя. 7. Изделие по пп.5 и 6, отличающееся тем, что в качестве первого микронаполнителя используют метакаолин со средним диаметром гранул 3 20 мкм, полученный путем термообработки каолинита при 700 900oС, и в качестве второго микронаполнителя измельченный кремнезем с средним диаметром гранул 0,3 3,0 мк.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7