Способ терморегулирования высокотемпературной аккумуляторной батареи
Использование изобретения: в батареях на основе высокотемпературных электрохимических систем: натрий-сера /350°С/, натрий-хлорид никеля /370°С/, литий-сульфид железа /480°С/ и др. Сущность изобретения: терморегулирование осуществляется за счет использования теплоты фазового перехода плавление - кристаллизация вещества, которое размещают в объеме батареи и на рабочем режиме поддерживают в двухфазном состоянии, обеспечивая соотношение между массами расплавленной и кристаллизованной фаз в диапазоне (10 - 15) : 1. Перед хранением или зарядом батареи ее термостатируют, уменьшая теплосброс в окружающую среду и, обеспечивая постепенную кристаллизацию расплава вещества в объеме батареи, используют выделение теплоты кристаллизации для увеличения времени хранения или заряда батареи без ее дополнительного подогрева. 1 з.п. ф-лы, 1 ил.
Изобретение относится к химическим источникам тока и может быть использовано для терморегулирования высокотемпературных аккумуляторных батарей, например, систем натрий-сера (рабочая температура 300...350оС), натрий-хлорид никеля (250...370оС), литий-сульфид железа (400...480оС) и др.
Для батарей, применяемых на транспортных установках (электромобили, электропогрузчики), а также в системах с непостоянным первичным источником энергии (ветер, солнце и др.), необходимо сохранять температуру в диапазоне, близком к рабочему также и при отключении батареи от нагрузки на несколько часов, например в ночное время. Поддержание при этом расплавленного состояния электродов и достаточной электрической проводимости твердого электролита из бета-глинозема позволяет увеличить ресурс батарей и повысить эксплуатационные характеристики установок. Применение для этой цели дополнительного нагрева (электричество или сжигание топлива) не всегда возможно, особенно в отдельных местностях, в дорожных условиях и на открытых стоянках, а использование высокоэффективной экрано-вакуумной или волоконно-ампульной теплоизоляции существенно усложняет конструкцию батарей, удорожает их изготовление. При использовании менее эффективной теплоизоляции ее объем может занимать до 50...80% объема батареи, что неприемлемо для большинства транспортных установок. Известен способ терморегулирования серно-натриевой батареи, при котором измеряют температуру внутреннего теплоизолированного объема батареи, где размещены высокотемпературные аккумуляторы и при снижении температуры ниже допустимого уровня осуществляют его нагрев с помощью электронагревателя или тепловой трубы с каталитической камерой сжигания углеводородного топлива. При повышении температуры выше допустимого уровня источники нагрева отключают и с помощью вентилятора пропускают воздух через названный объем, обеспечивая его циркуляцию. Когда батарея отключена от нагрузки и постепенно охлаждается, ее периодически нагревают с помощью тепловой трубы, так как электронагреватель также отключен [1]. Недостатком известного способа является необходимость периодического использования внешнего источника нагрева - каталитической камеры сжигания с тепловой трубой, при нахождении батареи в отключенном состоянии, что требует расхода углеводородного топлива, усложняет и удорожает эксплуатацию батареи, особенно в составе транспортной установки. Известен способ терморегулирования высокотемпературной серно-натриевой батареи, при котором через внутренний теплоизолированный объем с размещенными в нем аккумуляторами пропускают нагревающую или охлаждающую жидкость, регулирование потока которой осуществляют с помощью терморегулируемого клапана. При температуре выше или ниже заданной, например при 370о и 300оС, клапан открывается и пропускает соответственно холодную или горячую жидкость. Для уменьшения тепловых потерь из батареи используют экранно-вакуумную теплоизоляцию [2]. Недостатки известного способа заключаются в сложности подбора жидкости, не кипящей в указанном диапазоне температур; в аппаратурной сложности системы для прокачки жидкости, ее подогрева и охлаждения. Кроме того, при этом в данном способе так же, как и при предыдущем, требуется периодическое включение внешнего источника тепла - электронагревателя для подогрева батареи во время ее хранения. Известен способ терморегулирования высокотемпературной серно-натриевой батареи, установленной на электромобиле, при котором для охлаждения аккумуляторов используют наружный воздух, продувая его в промежутках между аккумуляторами. Для этого предварительно устанавливают соотношение между температурной внутри батареи и потребляемой нагрузкой и одновременно с подачей воздуха изменяют отдаваемую мощность батареи с учетом соответствующего изменения внутреннего тепловыделения в ее теплоизолированном объеме. Непрерывно фиксируют рабочую температуру батареи и при ее достижении включают воздушное охлаждение. Если температура продолжает увеличиваться, то уменьшают нагрузку батареи до тех пор, пока температура не начнет уменьшаться, и при достижении ее нижнего значения нагрузку увеличивают, при необходимости отключая воздушное охлаждение [3]. Недостатки этого способа заключаются в том, что на режиме хранения батареи для поддержания температуры аккумуляторов их необходимо периодически подогревать. Кроме того, необходимость частого изменения величины потребляемой нагрузки снижает эффективность работы батареи и электромобиля в целом. Наиболее близким к предложенному способу терморегулирования высокотемпературной аккумуляторной батареи по технической сущности является способ, при котором между аккумуляторами, находящимися во внутреннем теплоизолированном объеме батареи, дополнительно размещают объем с теплоаккумулирующим веществом, которое распределяют в отдельных ампулах между аккумуляторами. Вещество выбирают с температурой плавления в диапазоне максимально допустимой температуры работы батареи под нагрузкой и при ее превышении используют теплоту фазового перехода вещества плавление-кристаллизация для термостабилизации батареи и обеспечении запаса времени на включение системы охлаждения (газовой или жидкостной). При последующем охлаждении до температуры ниже максимально допустимой расплав кристаллизуется, что сопровождается выделением тепла в ампулах и распространением его во внутреннем объеме батареи. В качестве теплоаккумулирующих веществ могут использоваться композиции на основе хлоридов калия, натрия, магния, лития с температурой плавления в диапазоне 350...400оС [4]. Недостаток этого способа заключается в том, что теплота высокоэффективного фазового перехода используется для термостабилизации батареи только при перегреве аккумуляторов. На всех других режимах и особенно при отключенном состоянии батареи (в течение нескольких часов) теплота фазового перехода не используется, что также требует применения электронагревателей или других источников тепла. В результате снижается эффективность процесса терморегулирования батареи и усложняется процесс его осуществления. Целью изобретения является повышение эффективности и упрощение процесса терморегулирования батареи. Это достигается тем, что при способе терморегулирования высокотемпературной аккумуляторной батареи, включающем использование теплоты фазового перехода плавление-кристаллизация при термостабилизации внутреннего теплоизолированного объема батареи, в названном объеме размещают объем с теплоаккумулирующим веществом, имеющим температуру плавления в диапазоне оптимальной рабочей температуры батареи под нагрузкой, регулируют величину теплосброса из объема батареи и поддерживают вещество в двухфазном состоянии на рабочем режиме, а перед режимом хранении батареи с отключенной нагрузкой или режимом ее заряда термостатируют объем батареи и используют теплоту кристаллизации вещества на указанных режимах. При этом для регулирования величины теплосброса используют объемное изменение теплоаккумулирующего вещества при его плавлении и кристаллизации, величину которого задают из соотношения объемов расплавленной и кристаллизованной фаз и поддерживают путем регулируемого изменения условий теплоотдачи, например, обдувом батареи или изменением толщины ее теплоизоляции на локальных участках со стороны фронта кристаллизованной фазы. Кроме того, соотношение масс расплавленной и кристаллизованной фаз поддерживают в диапазоне (10-15):1. Использование теплоаккумулирующего вещества, имеющего температуру плавления в диапазоне оптимальной рабочей температуры батареи, позволяет достаточно просто, например, за счет регулирования конвективного теплообмена с внешней средой, за счет изменения толщины теплоизоляции батареи, поддерживать вещество в двухфазном состоянии. При этом часть его объема, расположенная в непосредственной близости с тепловыделяющими аккумуляторами, будет находиться в виде расплава, а часть, расположенная вблизи теплоизолированной и менее нагретой стенки корпуса батареи, - в кристаллизованном состоянии. В случае перегрева аккумуляторов и увеличения тепловыделения внутри батареи фронт расплава будет постепенно перемещаться к стенке корпуса и до полного расплавления всего объема вещества температура внутри корпуса будет сохраняться на уровне оптимальной. Время, в течение которого происходит расплавление вещества, может быть использовано для приведения в готовность системы аварийного охлаждения или системы отключения нагрузки, для локализации аварийных аккумуляторов или секций и т.д. Сигналом для срабатывания этих систем, используемым для регулирования величины теплосброса из батареи, может служить увеличение объема теплоаккумулирующего вещества при его плавлении, которое может достигать 20...30%, т. е. сигнал об опасности перегрева батареи вырабатывается заранее еще до развития этого процесса в масштабах батареи при ее нахождении в диапазоне оптимальной рабочей температуры несмотря на рост ее внутреннего тепловыделения. Если же батарея работала в нормальном режиме без перегрева и ее необходимо отключить от нагрузки на несколько часов, то перед этим ее термостатируют, обеспечивая минимально достижимый теплосброс в окружающую среду. Термостатирование может заключаться, например, в том, что прекращают принудительное (воздушное или жидкостное) охлаждение батареи, увеличивают толщину теплоизоляции с помощью дополнительного чехла или слоя и т.д. Замедление скорости охлаждения батареи позволяет замедлить скорость перемещения фронта кристаллизации в направлении от стенки корпуса батареи к аккумуляторам. До наступления полной кристаллизации расплава температура в объеме батареи будет сохраняться на уровне оптимальной. Как показывают расчетные и экспериментальные оценки, оптимальное соотношение масс расплавленной и кристаллизованной фаз составляет (10-15):1. Масса кристаллизованной фазы выбирается из условия, чтобы обеспечить запас времени на рассасывание области локального перегрева при разрушении отдельных аккумуляторов, аварийное отключение нагрузки, а также приведение в действие системы аварийного охлаждения. Масса расплавленной фазы должна быть достаточной для поддержания требуемого уровня температуры в течение нескольких часов хранения батареи с отключенной нагрузкой (7. ..10 ч) без дополнительного подогрева. При этом тепловые потери из батареи в окружающую среду будут компенсироваться за счет тепловыделения в процессе постепенной кристаллизации расплава. При времени кристаллизации не меньшем, чем время хранения батареи, она будет находиться при постоянной температуре, близкой к оптимальному рабочему диапазону и, следовательно, может быть в любой момент на этом отрезке времени приведена в рабочее состояние. Размещение объема с теплоаккумулирующим веществом в батарее осуществляется с учетом ее конструктивных особенностей. Например, если между отдельными аккумуляторами имеются охлаждаемые промежутки, то кристаллизованная часть вещества может содержаться в ампулах, размещенных в этих промежутках, а расплавленная часть содержится в полости общего теплоизолированного основания аккумуляторной сборки. При плотной упаковке аккумуляторов теплоаккумулирующее вещество может размещаться в полости экранов, закрепленных внутри на стенках корпуса батареи. Ампулы, капсулы, экраны и подобные элементы с теплоаккумулирующим веществом также могут быть размещены в батарее с возможностью их извлечения и замены. На чертеже приведена конструкция батареи применительно к варианту с размещением теплоаккумулирующего вещества внутри основания аккумуляторной сборки, разрез. Батарея содержит секции аккумуляторов 1, соединенные электрической цепью 2 и размещенные внутри корпуса 3, снабженного теплоизоляцией 4. Секции установлены на поверхности коробчатого контейнера 5, заполненного теплоаккумулирующим веществом, одна (большая) часть которого находится в расплавленном состоянии 6, а другая (меньшая) - в кристаллизованном состоянии 7. В верхней части поддона выполнена компенсационная трубка 8, выведенная в один из промежутков между секциями 1, в которую введен электрический уровнемер 9. В основании батареи теплоизоляция выполнена с двумя подвижными слоями 10, 11. В зависимости от конструкции батареи теплоаккумулирующее вещество может быть разделено на части, которые размещены также между отдельными секциями и аккумуляторами или во внутренних стенках корпуса; поддон 5 может быть выполнен с возможностью замены без разгерметизации корпуса батареи и т. д. Сущность способа при подобных конструктивных вариантах батареи остается неизменной. При разогреве батареи и выводе ее на рабочий режим с подключением нагрузки возрастает тепловыделение в аккумуляторных секциях 1 и происходит постепенное расплавление вещества в поддоне 5 с увеличением его объема и повышением уровня расплава в трубке 8. При выходе батареи на номинальный режим уровнемер 9 фиксирует заданный уровень расплава в трубке 8. Сигнал от уровнемера используется для регулирования величины зазора между теплоизоляционными слоями 10 и 11, которые раздвигают или сдвигают в направлении стрелок 12 или 13, устанавливая тем самым величину теплосброса из батареи через зазор между торцами слоев 10 и 11, обеспечивающую поддержание заданного уровня расплава в трубке 8. Регулирование теплосброса из батареи, кроме того, может быть осуществлено, например, с помощью дополнительного обдува корпуса батареи воздухом. Также могут быть применены другие известные схемы уровнемеров, например, поплавкового или мембранного типа. При незапланированном увеличении тепловыделения в секциях 1, когда эффективность системы теплосброса недостаточна, начинается постепенное расплавление кристаллизованной массы 7, сопровождающееся увеличением объема жидкой фазы 6 и повышением ее уровня в трубке 8. Этот процесс идет при постоянной температуре внутри корпуса 3 батареи, мало отличающейся от температуры номинального режима. Изменение электрического сигнала от уровнемера 9 служит для принятия подготовительных мер к отключению нагрузки и/или дополнительному охлаждению батареи. Процесс плавления растянут во времени и предотвращает резкое повышение температуры внутри батареи. Это позволяет использовать несколько аварийных систем, построенных на разных физических принципах и дублирующих друг друга. В результате постепенного снижения температуры в объеме батареи начинается постепенная кристаллизация расплава практически при ее постоянном значении. Уровень расплава в трубке 8 снижается и при достижении номинального значения уровнемер вырабатывает соответствующий сигнал на срабатывание системы рабочего регулирования теплосброса. Батарея приходит в нормальное эксплуатационное состояние. При переводе батареи в режим хранения обеспечивают ее термостатирование, минимизируя теплосброс из корпуса. Для этого сдвигают слои теплоизоляции 10 и 11 в направлении по стрелкам 13, прекращают обдув корпуса воздухом, надевают дополнительный теплоизоляционный чехол и отключают внешнюю электрическую нагрузку от батареи. В результате процесс кристаллизации расплава 6 резко замедляется и осуществляется термостабилизация внутреннего объема корпуса при постоянном уровне температуры. Этот процесс сопровождается постепенным снижением уровня расплава в трубке 8 и при достижении заданного минимального значения уровнемер 9 вырабатывает сигнал на включение нагрузки или на принудительный нагрев батареи. Масса расплава выбирается из расчета, чтобы за время хранения батареи с отключенной нагрузкой не произошла ее полная кристаллизация, вплоть до объема в трубке 8. Например, при максимальном времени хранения батареи 7 ч масса расплава выбирается из расчета ее полной кристаллизации за 7,5 ч, т. е. с запасом на непредвиденные обстоятельства, способные задержать включение батареи. Это условие легко выполняется для стационарных энергетических установок, не имеющих жестких ограничений по весогабаритным характеристикам. Однако и для транспортных установок имеется достаточно большой резерв, чтобы разместить требуемое количество теплоаккумулирующего вещества или существенно приблизиться к оптимальной его загрузке. Таким образом, функционирование батареи осуществляется на рабочем режиме и при ее хранении практически при одном и том же уровне температуры, обеспечивающем поддержание оптимальных условий для аккумуляторов. П р и м е р. Осуществляли терморегулирование серно-натриевой батареи, имеющей 56 аккумуляторов емкостью по 50 А










Формула изобретения
1. СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ, включающий использование теплоты фазового перехода плавление - кристаллизация теплоаккумулирующего вещества при термостабилизации внутреннего теплоизолированного объема батареи, согласно которому в объеме батареи размещают объем с теплоаккумулирующим веществом, имеющим температуру плавления в диапазоне оптимальной рабочей температуры батареи под нагрузкой, отличающийся тем, что регулируют величину теплосброса из объема батареи и поддерживают вещество в двухфазном состоянии на рабочем режиме, а перед режимом хранения батареи с отключенной нагрузкой или режимом ее заряда термостатируют объем батареи и используют теплоту кристаллизации вещества на упомянутых режимах. 2. Способ по п.1, отличающийся тем, что для регулирования величины теплосброса используют объемное изменение теплоаккумулирующего вещества при его плавлении и кристаллизации, величину которого задают из соотношения объемов расплавленной и кристаллизованной фаз и поддерживают путем регулируемого изменения условий теплоотдачи со стороны фронта кристаллизованной фазы.РИСУНКИ
Рисунок 1