Способ нейтрализации токсичных компонентов ракетного топлива на основе азотной кислоты и несимметричного диметилгидразина в отделяющейся части ракеты
Изобретение относится к ракетной технике, а именно к ракетам с жидкостной ракетно-двигательной установкой с турбонасосным агрегатом и токсичными компонентами ракетного типлива (КРТ). Целью изобретения является повышение эффективности обезвреживания остатков токсичных КРТ. Для этого часть жидкого горючего - гидразина НДМГ подают в магистраль низкого давления окислителя на основе азотной кислоты, а газообразные продукты разложения окислителя направляют в бак с остатками НДМГ, после чего осуществляют сброс продуктов взаимодействия в окружающее пространство. 1 ил.
Изобретение относится к ракетно-космической технике, преимущественно к ракетам с жидкостным ракетным двигателем (ЖРД) с турбонасосной системой подачи и токсичными компонентами ракетного топлива (КРТ), а именно горючего на основе гидразина (НДМГ), а окислитель на основе азотной кислоты (АК) или азотного тетраксида (АТ).
Известны окислительные способы нейтрализации НДМГ кислородом с катализатором, двуокисью азота, карбонильными соединениями [1], но они неприемлемы для использования на отделяющейся части (ОЧ) ракеты при ее полете на пассивном участке траектории (ПУТ) из-за ряда ограничений, связанных с высокой температурой, необходимостью больших количеств окислителя и т.д. Наиболее близким по технической сущности к предлагаемому является способ газификации самовоспламеняющихся КРТ, какими являются НДМГ, АК, АТ, широко используемый в химических системах наддува топливных баков ракет [2] . В таких системах газ наддува образуется в результате химического взаимодействия АК и НДМГ. Применение такого способа очистки баков ОЧ от НДМГ путем его газификации затруднено, так как на ПУТ положение НДМГ в баке не определено, возникает проблема обеспечения контактирования НДМГ и АК, при взаимодействии АК и НДМГ возникают высокие температуры 1300-3000оС и т.д. Кроме того, не решается задача нейтрализации окислителя (АК или АТ). Цель изобретения - повышение эффективности обезвреживания остатков токсичных КРТ, снижение массовых потерь на обеспечение условий протекания процесса при движении ОЧ на ПУТ. Это достигается тем, что после выключения ЖРД подают жидкий НДМГ в магистраль низкого давления окислителя (АК и АТ), сообщающуюся с баком окислителя, при этом количество подаваемого НДМГ выбирают из условия эндотермического разложения остатков окислителя, а газообразные продукты разложения окислителя при достижении предельно допустимого давления в баке, определяемого его прочностью, направляют в бак с остатками НДМГ и осуществляют сброс продуктов взаимодействия в окружающее пространство через дренажную систему бака горючего и магистраль горючего ЖРД. Способ реализуют следующим образом. Одной из основных проблем при нейтрализации остатков КРТ на ПУТ является неопределенность положения КРТ после выключения ЖРД и появления отрицательных перегрузок, обусловленных процессом разделения степеней (действие тормозных ПРД, установленных на ОЧ, воздействие факела ДУ 2-й ступени). Эта проблема приводит к необходимости принятия дополнительных мер по обеспечению соединения КРТ, например создания вращения ОЧ вокруг продольной оси, создания мелкодисперсной смеси вводимого КРТ (АК, АТ), определенного направления впрыска и т.д. Наиболее приемлемый вариант - подача в бак с НДМГ не мелкодисперсионного АК (АТ) и их паров, что позволяет решить проблему взаимодействия КРТ в баке с НДМГ. В качестве таких газов наиболее приемлемым являются продукты эндотермического разложения АК (N2O4; NO2; H2O; O2; CH2,...). Такой состав газообразных продуктов легко получить на борту ОЧ следующим образом. После прохождения предварительной команды (ПК) на выключение ЖРД перекрываются клапаны подачи КРТ на турбонасосные агрегаты ТНА, обеспечивающие высокое давление в магистралях О и Г (ТНА-камера ЖРД) до 50 атм. После падения оборотов ТНА происходит резкое падение давления на входе в ЖРД и при достижении 20 атм происходит автоматическое закрытие главных клапанов магистралей высокого давления горючего и окислителя перед камерой сгорания. В туннельном трубопроводе ТНА окислителя, даже после обратных перегрузок имеется значительное количество КРТ, т.е. эта магистраль заполнена полностью (450...500 кг АК). В баках О и Г после обратных перегрузок (nx









Следствием этого процесса в туннельном трубопроводе то, что газы нейтрализации обеспечивают дальнейший процесс в баке с АК. По достижении предельно допустимого давления в баке окислителя, определяемого его прочностью (-4-5 атм), продукты эндотермического разложения АК подают в бак с НДМГ. Внутри бака Г происходит взаимодействие НДМГ с газообразными продуктами: О2, NO и другими окислами, заполнившими весь объем бака. Газообразная фаза продуктов эндотермического разложения АК обеспечивает наиболее эффективное взаимодействие с НДМГ, так как обеспечивается надежный контакт со всей газожидкостной смесью остатков НДМГ. Химические процессы, происходящие в баке Г, реализуются по известной схеме. (CH3)2NNH2+4NO2 __

(CH3)2NNH2+8NO __

(CH3)2NNH2+4O2 __

(CH3)2NNH2+8N2O __

осуществимость в условиях невесомости и неопределенности положения КРТ в баках введения НДМГ в АК, а именно в туннельный трубопровод либо из магистрали высокого давления ЖРД, либо из специальной емкости с мембранной системой подачи;
при взаимодействии НДМГ и АК (когда количество НДМГ существенно меньше, т. е. в условиях эндотермического разложения) продукты реакции представляют собой наиболее благоприятную смесь для дальнейшего их использования в процессе обезвреживания НДМГ;
при подаче газовой смеси в бак с НДМГ обеспечивается эффективное взаимодействие продуктов разложения АК с НДМГ во всем объеме бака, что ускоряет процесс реакции, снижает время и уменьшает количество непрореагировавшего НДМГ;
достигается возможность продуть топливный отсек и магистраль горючего ЖРД газами нейтрализации по схеме: введение НДМГ в туннельный трубопровод с АК - газообразные продукты эндотермической реакции в бак с АК, где этот процесс идет далее и после поднятия давления до максимально возможного подают в бак с НДМГ газообразные продукты (N2O4, H2O, CO2, O2, N2O) для окисления НДМГ и сброс в окружающую среду продуктов взаимодействия (СО2, H2O, N2). Эффективность процесса обезвреживания обеспечивается
наличием сплошности АК при введении в него НДМГ за счет определения места ввода (туннельный трубопровод сообщающийся с баком АК);
введением в бак с НДМГ обезвреживающего компонента в виде газа, что повышает эффективность взаимодействия с КРТ;
созданием продувки обоих баков и магистрали ЖРД наиболее токсичного НДМГ. Снижение массовых потерь достигается за счет использования КРТ для нейтрализации непосредственно из магистралей и баков ракеты, выбора температурного режима эндотермического разложения АК и газового окисления НДМГ. Способ реализуют при помощи устройства, приведенного на чертеже. По команде ГК предлагается не задействовать клапан закрытия магистрали горючего, для дальнейшей продувки ДУ - через бак НДМГ газами нейтрализации. Схема подачи НДМГ в магистраль с АК (АТ) может быть следующая: из емкости 1, размещенной в отсеке ДУ, после команды ГК подается НДМГ в туннельный трубопровод 2 с АК (АТ). После прохождения эндотермического разложения АК (АТ) в трубопроводе 2 и баке 3 с О газы через клапаны 4 подаются в бак 5 с НДМГ. Сброс продуктов разложения из бака 5 Г с осуществляется через штатный дренажный клапан 6 и через магистрали 7 горючего, через клапан 8 и камеру ДУ 9. Клапан 4 срабатывает при максимально допустимом давлении, определяемым прочностью бака 3 с О. Магистраль 10 служит для подачи продуктов эндотермического разложения из бака 3 с О в бак 5 с Г. Дополнительные доработки ОЧ заключаются в разработке и установке шар-баллона с мембраной и автоматикой для подачи НДМГ, клапана 4, газовода из бака с О в бак с Г, и обеспечение невключения клапана 3 в магистрали Г по команде ГК. Объем доработки незначителен.
Формула изобретения
РИСУНКИ
Рисунок 1