Способ определения термоморозостойкости бетона
Авторы патента:
Использование: область испытаний строительных материалов, определение термоморозостойкости, определяют начальную морозостойкость испытуемых образцов. Производят одноосное сжатие испытуемых образцов. Измеряют продольные и поперечные относительные деформации. Определяют уровни нагружения, соответствующие верхние и нижней границы микротрещинообразования, и модули деформаций при этих уровнях нагружения. 1 ил., 1 табл.
Изобретение относится к области испытаний строительных материалов и может быть использовано для ускоренного определения термоморозостойкости бетонов.
Известен способ определения термоморозостойкости бетона, по которому испытуемые образцы подвергают нагреванию до 70оС и остыванию до 20оС по 8-часовому режиму в течение 60 циклов для тяжелого бетона и 90 циклов для керамзитобетона. По окончании многоциклового нагревания-остывания испытуемые образцы насыщают водой и подвергают испытаниям на морозостойкость, например, по ГОСТ 10060-87 [1]. Результат представляют в виде tF=60(90)+Ft, где tF - термоморозостойкость; Ft - морозостойкость после нагревания-остывания. Этот способ имеет существенные недостатки, а именно большую продолжительность и трудоемкость испытаний, например, если морозостойкость бетона после нагревания-остывания составит 300 циклов, то общая продолжительность испытаний для тяжелого бетона при двухсменной работе лаборатории составит




















Eo=




Ft= Fo



П р и м е р. Требуется определить термоморозостойкость бетона в возрасте 28 сут. Состав бетона: цемент Ц=400 кг/м3, щебень известняковый Щ=1140 кг/м3, песок для строительных работ П=670 кг/м3, вода 190 кг/м3. Условия твердения бетона нормальные. Начальная морозостойкость бетона, определенная при температуре замораживания минус 50оС - по величине остаточных деформаций, составила Fo=52 циклов. По методике ГОСТ 24452 определяются продольные и поперечные относительные деформации образца-призмы 10х10х40 см из испытуемого бетона. Результаты испытаний даны в таблице. По известной методике определяют значения уровня нагружения, соответствующего верхней границе микротрещинообразования (при значении










Определяют величину модулей деформаций:
1. при уровне нагружения, равном верхней границе микротрещинообразования
Ev=


=27,9 x103 МПа. 2. при уровне нагружения, равном нижней границе микротрещинообразования
Ео=


= 35,2 x103 МПа
Рассчитывают термоморозостойкость бетона, т.е. морозостойкость бетона, предварительно прошедшего 60 циклов до 70оС и охлаждения до 20оС, по формуле
Ft= Fo






Вывод: многоцикловое нагревание-остывание не приведет к изменению структуры бетона. Предлагаемый способ может быть эффективно использован для организации оперативного контроля термоморозостойкости бетона в промышленности сборного железобетона, а также при проведении исследовательских работ по разработке составов бетонов и технологии их выдерживания для обеспечения высокой долговечности конструкции. Существенным достоинством способа является то, что необходимое для его реализации оборудование (по ГОСТ 24452) доступно любой заводской лаборатории, а результат оценки стойкости структуры к многоцикловому нагреванию-остыванию может быть получен в течение 2-3 ч.
Формула изобретения
Ft= Fo


где F0 - начальная морозостойкость бетона;
Ev - модуль деформации при уровне нагружения, равном верхней границе микротрещинообразования бетона;
E0 - модуль деформаций при уровне нагружения, равном нижней границе микротрещинообразования бетона;
a и b - эмпирические коэффициенты.
РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к области изготовления железобетонных изделий
Изобретение относится к испытанию материалов, а именно к испытаниям грунтов и аналогичных материалов на морозоустойчивость
Изобретение относится к испытаниям дорожно-строительных материалов, а именно к приборам для определения прочности сцепления каменных материалов с вяжущим в слоях поверхностных обработок дорожных покрытий в лабораторных условиях
Изобретение относится к способам испытания разнородных строительных материалов на теплопроводность и может быть применено при производстве строительных материалов для индивидуального строительства
Изобретение относится к области строительных материалов, преимущественно к производству гидрофобных портландцементов
Изобретение относится к строительным материалам и может быть использовано при получении золосодержащих вяжущих, растворов, бетонов, автоклавных и обжиговых материалов
Способ определения прочности бетона // 2106630
Изобретение относится к промышленности строительных материалов и может быть использовано при исследовании свойств бетонов
Изобретение относится к области испытаний строительных материалов и может быть использовано для определения упругих свойств (модуля упругости) при оценке качества заполнителей
Изобретение относится к области строительных материалов, а именно к способам оценки сцепления заполнителя с растворной частью бетона на неорганических вяжущих, и может быть использовано для сравнительной оценки механической долговечности контактной зоны бетонов различных составов
Изобретение относится к средствам испытаний в области строительства, а именно к средствам оценки прочности каменных и кирпичных стен зданий и сооружений
Изобретение относится к горнодобывающей промышленности и позволяет решить задачу осуществления долговременного контроля за прочностью твердеющей смеси, оптимизации ведения горных работ с одновременным упрощением конструкции датчика и методики измерений
Изобретение относится к исследованиям свойств бетонов и других пористых материалов на воздухопроницаемость
Изобретение относится к промышленности строительных материалов
Изобретение относится к производству санитарно-технических и отделочных изделий из керамических материалов, в частности к определению содержания наполнителя в фарфоро-фаянсовых шликерах
Изобретение относится к методам определения общей пористости строительных материалов и может быть использовано при производстве строительных изделий и конструкций из серобетона