Щелевая камера для тепловой обработки бетонных изделий
Использование: в области заводского производства сборных железобетонных изделий, а именно - для тепловой обработки их в щелевых камерах продуктами сгорания природного газа. Сущность изобретения: в процессе тепловой обработки производят искусственную турбулизацию движущегося газового потока при помощи специальной конструкции подвесного подъемно-опускающегося потолка и неподвижного пола камеры. Потолок, оборудованный приводом вертикального перемещения его относительно оси, выполнен в виде системы последовательно соединенных между собой скошенных конфузоров и диффузоров. Для движущейся среды газового потока такая конструкция представляет собой аэродинамический шнек (в отличие от механических шнеков из скрученной ленты). В опущенном состоянии потолка поток теплоносителя, двигаясь в пространстве между потолком и вагонетками, а также полом и вагонетками, отбрасывается скошенными ребрами диффузоров к изделиям и закручивается в турбулентные вихри, которые интенсифицируют теплообмен между средой и бетоном. В результате использования данного технического решения повышается производительность камеры за счет сокращения цикла прогрева и увеличения оборачиваемости формооснастки. При сохранении прежнего цикла тепловой обработки возможно уменьшить удельный расход газа на единицу продукции путем снижения тепловой мощности генераторов. 2 ил.
Изобретение относится к технологии производства строительных материалов, в частности к тепловой обработке изделий из бетона в камерах непрерывного действия, использующих в качестве теплоносителя продукты сгорания природного газа.
На заводах сборного железобетона и КПД при использовании конвейерной технологии производства изделий применяются одноярусные щелевые камеры, представляющие собой горизонтальный туннель, в котором по рельсовому пути движутся вагонетки с изделиями [1]. Движение вагонеток происходит по определенному ритму, за время цикла ТО они проходят по длине щели три температурные зоны: разогрева, изотермической выдержки и охлаждения. Для интенсификации процесса теплообмена между средой и изделиями рекомендуется осуществлять в зоне активной тепловой обработки рециркуляцию среды. Рециркуляция применяется в щелевых камерах, использующих как паровоздушную среду прогрева, так и воздушно-сухую, например продукты сгорания природного газа (ПСПГ) [2]. В последнем случае камера оборудуется теплогенерирующими устройствами, а в объеме щели организуются условно-замкнутые контуры циркуляции (по числу теплогенераторов), в которых движущийся теплоноситель отдает свое тепло вагонеткам с изделиями и, охлаждаясь, поступает вновь на рециркуляцию, попутно подмешиваясь к горячим ПСПГ. Часть остывших ПСПГ выводится в атмосферу для поддержания в камере небольшого разрежения - 5...10 Па. Известно, что в воздушно-сухой среде, какой является среда ПСПГ, на интенсивность процесса теплоотдачи кроме температуры, относительной влажности влияет еще и скорость движения теплоносителя. Однако одноярусные щелевые камеры для тепловой обработки железобетонных изделий в среде ПСПГ выполняются по типовым проектам пропарочных камер, имеющих большой свободный объем и неприспособленных к данному виду теплоносителя, коэффициент теплоотдачи которого намного ниже, чем при паропрогреве. Основной недостаток данных конструктивных решений щелевых камер - невозможность регулирования заданного аэродинамического режима тепловой обработки. Наиболее близким к заявляемому техническому решению является установка для термической обработки бетонных изделий [3], содержащая камеру непрерывного действия с транспортирующим устройством, патрубок для подачи теплоносителя, размещенный в нижней части камеры и соединенный через калорифер и вентилятор с патрубком для отсоса отработанного теплоносителя на входе камеры, которая снабжена двухстворчатой перегородкой над движущимися изделиями, отсекающей избыточный объем камеры над изделиями. Перегородка выполнена с приводом относительно оси, что дает возможность перемещать ее вверх и вниз, регулируя тем самым заданный гидравлический режим с целью интенсификации процесса тепловой обработки. Однако данное техническое решение применительно к камерам, использующим ПСПГ, не позволяет достичь существенного эффекта в повышении скорости прогрева изделий. Коэффициент теплоотдачи газовой среды при турбулентном движении потока намного выше, чем при ламинарном движении. При обтекании плоской пластины (железобетонного изделия) в трубах и каналах (щелевая камера) критическое значение гидродинамического критерия Рейнольдса Re, при котором ламинарный характер газовоздушного потока переходит в турбулентный, находится в пределах 3.2

Формула изобретения
ЩЕЛЕВАЯ КАМЕРА ДЛЯ ТЕПЛОВОЙ ОБРАБОТКИ БЕТОННЫХ ИЗДЕЛИЙ продуктами сгорания природного газа, содержащая горизонтальный тоннель с торцевыми крышками и полом, на котором закреплен рельсовый путь для перемещения форм-вагонеток, и теплогенерирующие установки с теплогенераторами, вентиляторами и газоходами для создания в объеме камеры условно-замкнутых колец циркуляции теплоносителя, оборудованная подвесным подвижным потолком с приводом его вертикального перемещения, отличающаяся тем, что, с целью интенсификации процесса прогрева за счет турбулизации газового потока среды, подвесной подвижной потолок и пол камеры по ее длине снабжены оребрением в виде последовательно соединенных скошенных конфузоров и диффузоров, обращенных ребрами к обогреваемым изделиям.РИСУНКИ
Рисунок 1, Рисунок 2