Использование: в электронных вакуумных приборах при электровакуумной обработке электронно-лучевых трубок (ЭЛТ). Сущность изобретения: при электровакуумной обработке ЭЛТ откачивают, обезгаживают, активируют катод и отпаивают. Затем распыляют газопоглотитель, производят высоковольтный прожиг и тренируют ЭЛТ с перегревом катода и расфокусировкой электронного пятна. На начальном этапе тренировки производят засветку экрана сфокусированным электронным пучком величиной
путем подачи номинальных ускоряющих напряжений. Время засветки экрана определяется из соотношения, указанного в формуле. 1 табл.
Изобретение относится к электровакуумным приборам и может быть использовано в производстве электронно-лучевых трубок (ЭЛТ).
Известен способ электровакуумной обработки ЭЛТ, включающий откачку, обезгаживание, активировку катода, отпай, распыление газопоглотителя, высоковольтный прожиг и тренировку трубок [1].
Недостатком этого способа является то, что на тренировку ЭЛТ поступают со сравнительно низким вакуумом, примерно 1

10
-4 - 1

10
-5мм рт.ст., что может привести к частичному отравлению и разрушению катода положительными ионами.
Известен также способ электровакуумной обработки ЭЛТ, включающий откачку, обезгаживание, активировку катода, отпай, распыление газопоглотителя, высоковольтный прожиг и тренировку. Повышение вакуума в ЭЛТ достигается за счет включения накала и очистки ускоряющего электрода электрическим током при распылении газопоглотителя [2].
Недостатком данного способа является то, что в процессе очистки при распылении газопоглотителя электронный луч не достигает экрана ЭЛТ и очистка электродов ведется локально, т.е. происходит очистка катода и ускоряющего электрода, причем 70% всей остаточной газовой среды составляют углеводороды (С
nН
m). В дальнейшем в процессе тренировки углеводороды распадаются с непрерывным осаждением атомарного углерода на поверхность катода, поскольку тренировка происходит в триодном режиме (катод + модулятор + ускоряющий электрод). Область ионизации и соответственно разложения C
nH
m составляет примерно 1 см длиной и диаметром 0,6 мм.
Наиболее близким по технической сущности к предлагаемому является способ электровакуумной обработки ЭЛТ, включающий откачку, обезгаживание, активировку катода, отпай, распыление газопоглотителя, высоковольтный прожиг и тренировку ЭЛТ с перегревом катода и расфокусировкой электронного пятна. Этот способ выбран нами в качестве прототипа [3].
Недостатком этого способа является то, что создание электронного пятна на экране ЭЛТ производится без подачи напряжения на фокусирующий электрод и без включения развертки электронного луча. При этом только незначительная часть электронного тока достигает экрана в виде расфокусированного неподвижного пятна, что не создает условий для быстрого разложения углеводородов и роста вакуума перед тренировкой прибора.
Предлагаемый способ электровакуумной обработки ЭЛТ, включающий откачку, обезгаживание, активировку катода, отпай, распыление газопоглотителя, высоковольтный прожиг и тренировку ЭЛТ с перегревом катода и расфокусировкой электронного пятна, согласно изобретению, на начальном этапе тренировки ЭЛТ производят засветку экрана сфокусированным электронным лучом величиной 0,3 I
к max путем подачи номинальных ускоряющих напряжений в течение времени, определяемого из соотношения t = K

ln

, где К - константа (К = 2,3); V - объем кинескопа, л; S - скорость поглощения газов газопоглотителем и внутренними поверхностями оболочки, л/с; Р
1 и Р
2 - давления остаточных газов в кинескопе до и после засветки экрана, мм рт.ст.
Сопоставительный анализ показывает, что заявленное решение отличается от прототипа тем, что на начальном этапе тренировки производят засветку экрана сфокусированным электронным пучком величиной 0,3 I
к max путем подачи номинальных ускоряющих напряжений в течение времени, определяемого из соотношения t = K

ln

.
Сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявленное решение от прототипа, что позволяет сделать вывод о соответствии критерию "Существенные отличия". Признак о времени засветки экрана электронным лучом вытекает из соотношения t = K

ln

.
Скорость повышения вакуума зависит от объема прибора V и скорости поглощения ионизированных газов газопоглотителем и внутренними поверхностями колбы S. Это существенный признак.
Признак о величине тока луча 0,3 I
к max во время засветки экрана выбран исходя из необходимости создания условий режима работы ЭЛТ близкого к рабочему. Величина тока луча 0,3 I
к max несколько превышает рабочий ток ЭЛТ, что ускоряет процесс разложения углеводородов и повышение вакуума. Ток I
к max - это максимальный ток катода, когда на модулятор по отношению к катоду подается нулевой потенциал, а на ускоряющие электроды подают номинальные напряжения. Это также существенный признак.
Учитывая, что после распыления газопоглотителя определяющим компонентом остаточной газовой среды прибора являются углеводороды (свыше 70%), после засветки экрана ЭЛТ электронным лучом и подачи повышенного напряжения накала происходит бурное разложение углеводородов на газообразный водород, который поглощается газопоглотителем, и атомарный углерод, который оседает на внутренние поверхности прибора (например, для метана: CH
4 -> C + 2H
2).
Предлагаемый способ обеспечивает при растровой засветке экрана ЭЛТ перед тренировкой быстрое разложение углеводородов C
nH
m и осаждение углерода на внутреннюю поверхность конуса и экрана прибора, а не на катод, как это имеет место в триодном режиме.
Применение предлагаемого способа электровакуумной обработки позволяет повысить вакуум в приборе примерно на порядок и тем самым достичь высоких и стабильных эмиссионных характеристик катода в процессе тренировки ЭЛТ.
П р и м е р. Опробование способа электровакуумной обработки проводилось на кинескопах 16ЛК8Б. В процессе электровакуумной обработки в откачанных кинескопах после обезгаживания покрытий, активировки катода, отпая и распыления газопоглотителя на начальном этапе тренировки на подогреватель катода подается напряжение, равное 1,3-1,4 U
н ном., и производится засветка экрана сфокусированным электронным пучком величиной 30 мкА в течение 20с. Экспериментальным образом установлено, что величина t = 20 с является достаточной для повышения вакуума тренировкой более чем на порядок. Величина S определяется из экспериментальных данных, исходя из скорости падения давления остаточных газов dP/dt. В нашем случае S = 0,28 л/с, а объем кинескопа 16ЛК8Б равен 0,85 л. Соответственно время засветки будет равно: t = K

ln

= 2,3

ln

= 6,08

3,0 = 20,9 c .
Значения Р
1 и Р
2 взяты из таблицы.
В таблице приведены значения давления остаточных газов в текущих и пробных приборах.
Как видно из данных таблицы, давление остаточных газов в пробных приборах перед тренировкой на порядок ниже, чем в текущих. Соответственно в этих приборах ниже давление остаточных газов после тренировки и выше эмиссионные параметры оксидного катода.
Использование предлагаемого способа электровакуумной обработки ЭЛТ обеспечивает по сравнению с существующими способами следующие преимущества: - улучшение эмиссионных и вакуумных характеристик;
- повышение долговечности ЭЛТ;
- повышение выхода годных ЭЛТ.
Формула изобретения
СПОСОБ ЭЛЕКТРОВАКУУМНОЙ ОБРАБОТКИ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКИ, включающий откачку, обезгаживание, активировку катода, отпай, распыление газопоглотителя, высоковольтный прожиг и тренировку с перегревом катода и расфокусировкой электронного пятна, отличающийся тем, что на начальном этапе тренировки производят засветку экрана сфокусированным электронным лучом величиной

путем подачи номинальных ускоряющих напряжений в течение времени t, определяемого из соотношения

где K - константа (K = 2,3);
V - объем кинескопа, л;
S - скорость поглощения газов газопоглотителем и внутренними поверхностями оболочки кинескопа, л/с;
P
1 и P
2 - давление остаточных газов в кинескопе до и после засветки экрана, мм.рт.ст.,

- максимальный ток катода при нулевом потенциале на модуляторе, А.
РИСУНКИ
Рисунок 1,
Рисунок 2