Способ изготовления фрикционных дисков заключается в том, что для повышения адгезионной прочности фрикционного материала и прочностных характеристик стальной основы фрикционные диски спекают при 800-830°С и охлаждают до 200°С со скоростью 5-15 град/мин. Температурный диапазон спекания совмещен с режимом аустенизации стали каркаса, что позволяет при последующем регламентируемом охлаждении получить структуру бейнита, обладающую более высоким комплексом механических свойств в сравнении со структурой мартенсита отпуска, характерной для материала основы. Кроме того, с повышением температуры спекания увеличивается адгезионная прочность фрикционного материала на 30-40%. 1 табл.
Изобретение относится к порошковой металлургии, в частности к производству фрикционных дисков припеканием накладок из порошковых материалов к стальной основе.
Фрикционный диск состоит из стальной основы - каркаса (сталь 30Х2Н2ВФМА-Ш), на который после меднения и диффузионного отжига напрессовывается с двух сторон порошковый материал БМК-1 и производится спекание под давлением при 710

10
оС в защитной атмосфере.
Известен способ изготовления фрикционных дисков, включающий нанесение гальванического покрытия на стальной каркас и соединение его с прессованными накладками из порошкового материала на основе меди путем спекания под давлением в среде защитного газа.
Недостатком известного способа является низкая адгезионная прочность фрикционного слоя после спекания дисков в диапазоне температур 550-750
оС, не обеспечивающих протекания диффузионных процессов в полном объеме.
Наиболее близким по технической сущности и достигаемому результату является способ изготовления фрикционных дисков, включающий нанесение гальванического покрытия на стальную основу, прессование фрикционных накладок из порошкового материала БМК-1 и спекание под давлением в среде защитного газа при 720

20
оС в течение 3 ч. После спекания диски охлаждают до 200
оС со скоростью 1,5-4,0 град/мин, далее произвольно.
К недостаткам данного способа следует отнести низкие адгезионные свойства фрикционного слоя и низкий уровень прочностных характеристик стального каркаса, что приводит к отслоению, микровыкрашиванию фрикционных накладок и потери геометрии диска в результате микропластической деформации каркаса.
Анализ вышедших из строя фрикционных дисков показал, что основными эксплуатационными дефектами являются разрушение материала покрытия, которое происходит преимущественно по межфазным поверхностям исходных гранул порошковых композитов материала БМК-1 без видимых следов пластической деформации; отслаивание фрикционного материала БМК-1 от стального каркаса; пластическая деформация стального каркаса, приводящая к выгибанию диска в форме зонтика, вследствие низких прочностных свойств стали.
Причиной образования первых двух эксплуатационных дефектов является относительно низкая температура спекания, не обеспечивающая протекания диффузионных процессов в достаточной степени.
Причиной третьего дефекта - низкой конструктивной прочности стального каркаса, напротив, является достаточно высокая температура нагрева дисков при спекании, приводящая к разупрочнению стали 30Х2Н2ФВМА-Ш, имеющей структуру мартенсита.
Таким образом, решение задачи комплексного повышения механических характеристик фрикционных дисков, состоящих из стального каркаса и накладок из порошкового материала БМК-1, ограничено наложением двух взаимно исключающих условий: необходимостью повышения температуры спекания дисков с целью увеличения адгезионной прочности материала БМК-1 и необходимостью снижения температуры спекания с целью подавления процессов разупрочнения материала каркаса - стали 30Х2Н2ВФМА-Ш.
Задачей изобретения является разработка способа изготовления фрикционных дисков, состоящих из стального каркаса и припеченных накладок из порошкового материала на медной основе, одновременно обеспечивающего повышение как адгезионной прочности фрикционного слоя, так и прочностных характеристик стального каркаса.
Поставленная задача решается путем реализации предлагаемого способа изготовления фрикционных дисков, включающего меднение стального каркаса и прессование фрикционных накладок известным способом, завершающегося спеканием в среде защитного газа при 800-830
оС в течение 3 ч с последующим охлаждением со скоростью 5-15 град/мин.
Заявленный температурный диапазон спекания 800-830
оС совмещен с режимом аустенизации среднеуглеродистой комплекснолегированной конструкционной стали каркаса, что позволяет при последующем регламентируемом охлаждении (со скоростью в интервале значений 5-15 град/мин до температуры 200
оС) получить структуру бейнита, обладающую более высоким комплексом механических свойств в сравнении со структурой мартенсита отпуска. В известном способе температурный режим спекания совмещен с интервалом высокого отпуска материала каркаса - среднеуглеродистой комплекснолегированной стали со структурой мартенсита, ограниченным критической температурой А
с1 (740
оС), в котором скорость разупрочнения стали определяется необратимыми диффузионными процессами, и, следовательно, возможность существенного повышения комплекса свойств ограничена.
С повышением температуры спекания увеличивается адгезионная прочность фрикционного материала, но при температуре спекания выше 830
оС наблюдается выпотевание из порошкового материала легкоплавкой фазы.
Заявляемый интервал скоростей охлаждения дисков после операции спекания определяется тем, что, с одной стороны, при охлаждении со скоростью более 20 град/мин происходит подкалка стали каркаса на мартенсит (снижающая запас пластичности), требующая дополнительного отпуска, а с другой, при охлаждении со скоростью менее 5 град/мин происходит частичный распад переохлажденного аустенита в надкритической области температур (выше А
r3) с образованием низкопрочных структурных составляющих (перлита, сорбита), приводящий к снижению свойств (см. таблицу).
В результате спекания фрикционных дисков по режимам заявляемого способа существенно повышаются прочностные характеристики стального каркаса - предел прочности
в, предел текучести
0,2, коэффициент деформационного упрочнения К
д.у, твердость HRC
э, а также адгезионная прочность фрикционного слоя


при постоянстве его фазового состава.
Отличительные признаки предлагаемого способа по сравнению с прототипом следующие: фрикционные диски, состоящие из стального каркаса стали 30Х2Н2ВФМА-Ш и накладок из материала БМК-1, спекают при 800-830
оС; охлаждение спеченных дисков производят до 200
оС со скоростью 5-15 град/мин.
На стальной каркас (сталь 30Х2Н2ВФМА-Ш) после электролитического меднения и диффузионного отжига припекали с двух сторон накладки из порошкового материала БМК-1 следующего состава, мас.%: Sn 8-9; Pb 4-5; Zn 6-7; Fe 3-4; C 0,75-1,25; Si 0,75-1,0; Cu - остальное. Производили спекание под давлением 0,8-1,2 МПа в среде диссоциированного аммиака при 800-830
оС в течение 3 ч. Затем диски охлаждали в защитной атмосфере со скоростью в интервале 5-15 град/мин до 200
оС, далее на воздухе.
Исследования микроструктуры материала фрикционных дисков проводили методом растровой электронной микроскопии на приборе "jsm T-300" и методом рентгеноспектрального микроанализа на приборе "Stereoscan S4", фазовый состав исследовали рентгеноструктурным методом на дифрактометре "HZG-4/A-2".
Исследование механических характеристик проводили при 20
оС. Определяли прочностные характеристики стальной основы на образцах-свидетелях, прошедших обработку совместно с дисками: предел прочности
в, предел текучести
02, относительное удлинение

, относительное поперечное сужение

по ГОСТ 1497-84; коэффициент деформационного упрочнения К
д.у.=(
в/
0,2)
2-1; твердость HRC
э по ГОСТ 8064-79; ударную вязкость KCU по ГОСТ 9454-78. Адгезионные свойства фрикционного слоя определяли на сдвиг по ASTM STP 640 на механической машине "FP 100/1" при скорости перемещения захвата 1 мм/мин.
Механические характеристики материала фрикционных дисков для различных режимов спекания представлены в таблице. Из полученных результатов видно, что повышение температуры спекания от 710 до 800 и 830
оС повышает адгезионную прочность


материала БМК-1 в среднем на 33 и 44% соответственно. Существенно возрастают и прочностные характеристики и твердость. Так, увеличение значения
в для спекания 800 и 830
оС составляет соответственно 23 и 50% , при этом увеличивается значение коэффициента деформационного упрочнения К
д.у. от 0,51 (для Т
спек=710
оС) до 0,96 ... 1,49. Увеличение значения К
д.у. соответствует повышению сопротивления материала локализации пластической деформации и снижению вероятности хрупкого разрушения деталей, подверженных интенсивному силовому воздействию. Снижение ударной вязкости стали с повышением температуры спекания дисков является закономерным фактом и вполне соответствует достигаемому уровню прочности. Кроме этого, величина KCU порядка 600 КДж/м
2 является достаточной для тяжелонагруженных конструкций, тем более, что рабочее сечение фрикционного диска существенно меньше испытанного на ударный изгиб образца, а значит имеет большую возможность для объемной пластической релаксации напряжений.
Повышение температуры спекания до 850
оС и выше приводит к снижению адгезионной прочности материала покрытия БМК-1 (таблица) в результате подплавления легкоплавких компонентов.
Наложение дополнительного отпуска 650
оС 3 ч снижает прочностные характеристики стали и адгезионную прочность материала БМК-1, сохраняя тем не менее более высокий уровень свойств по сравнению со стандартным режимом спекания.
Формула изобретения
СПОСОБ ИЗГОТОВЛЕНИЯ ФРИКЦИОННЫХ ДИСКОВ,включающий предварительную обработку стального каркаса, нанесение на него гальванического медного покрытия, прессование накладок из порошковой смеси на медной основе и спекание накладок с каркасом под давлением в среде защитного газа в течение 3 ч с последующим контролируемым охлаждением до 200
oС, отличающийся тем, что спекание проводят при 800 - 830
oС, а охлаждение со скоростью 5 - 15 град/мин.
РИСУНКИ
Рисунок 1