Способ определения расхода жидкости
Использование: в нефтяной и нефтеперерабатывающей промышленности для определения расхода жидкости. Сущность изобретения: способ определения расхода жидкости заключается в измерении мощности, потребляемой приводным электродвигателем, определении значений постоянных величин, измерении температуры жидкости и определении расхода по формуле, приведенной в описании. 1 ил.
Изобретение относится к измерениям расхода жидкостей и может быть использовано в нефтяной и нефтеперерабатывающей промышленности и других отраслях народного хозяйства при измерении расхода жидкостей.
Известно устройство, реализующее способ измерения расхода жидкости по изменению скорости объемного заряда [1]. Недостаток указанного способа - низкая надежность измерений, не возможность работы с электропроводящими жидкостями, необходимость создания и установки специального оборудования. Наиболее близким по технической сути к предлагаемому является способ измерения расхода жидкости, реализованный в расходомере насосного агрегата, включающий измерение мощности приводного электродвигателя и определение расхода жидкости по измеренному значению [2]. К недостаткам способа относятся необходимость создания и установки дополнительной аппаратуры, узкий диапазон измерений. Цель изобретения - повышение надежности и расширение диапазона измерений расхода жидкости. Цель достигается тем, что перед определением расхода определяют значения постоянных величин (Nмeх, Z, r, у, е, m, v1, l, d, f, n), дополнительно измеряют температуру жидкости, а значение расхода определяют по формуле Q=






Ра - путевые потери;
Рс - сумма местных потерь давления;
e,у - коэффициенты путевых и местных сопротивлений;
l,d,f - длина, диаметр и площадь сечения проточной части трубопровода;
r - плотность жидкости. Гидравлические потери мощности вычисляются по формуле
Nг = Pтр x Q . (5)
Плотность жидкости связана с вязкостью жидкости и меняется в зависимости от температуры
r = m/v = (m/v1)

где m - коэффициент динамической вязкости;
v - вязкость жидкости;
v1 - вязкость жидкости, измеренная при температуре +50oC;
t - температура жидкости;
n - показатель степени, зависящий от температуры. Подставив в формулу (3) значения выражений (4) - (6), получим Nп= Nмeх+ (у




Давление в трубопроводе также зависит от расхода жидкости и выражается следующей зависимостью:
Р = (Z х r х Q2)/(2

N=Nмех+(y






(9) Преобразовав выражение (9), выводим зависимость расхода жидкости от полной потребляемой мощности насосом в виде выражения
Q=

В процессе работы дополнительно измеряют температуру жидкости, а расход определяют по формуле (10). На чертеже изображена блок-схема реализации способа. Блок-схема содержит датчик 1 мощности, сумматор 2, второй вход которого связан с задающим элементом 3 значения механических потерь, выход сумматора 2 связан с входом усилителя 4 с регулируемым коэффициентом усиления, выход которого соединен с входом первого элемента 5 с регулируемым коэффициентом нелинейности, выход которого связан с первым входом блока 6 вычислений, датчик 7 температуры, выход которого соединен с входом второго элемента 8 с регулируемым коэффициентом нелинейности, выход которого связан с вторым входом блока 6 вычислений. Способ реализуется следующим образом. Датчик 1 выдает сигнал, пропорциональный потребляемой мощности приводного электродвигателя насоса, который поступает в сумматор 2, где из него вычитается сигнал с задающего элемента 3, пропорциональный механическим потерям насоса. Сигнал с выхода сумматора 2 преобразуется в усилителе 4 в соответствии с коэффициентом усиления, с выхода элемента 4 сигнал поступает в элемент 5, где изменяется по степенной зависимости. С датчика 7 сигнал, пропорциональный текущей температуре жидкости в трубопроводе, поступает на вход элемента 8, где преобразуется по степенной зависимости, с выхода элемента 8 сигнал поступает в блок 6 вычислений, где перемножается с сигналом, поступающим с выхода элемента 5. Выходной сигнал элемента 6 является выходным сигналом системы, который пропорционален расходу жидкости в трубопроводе.
Формула изобретения
Q=

где Nо - полная мощность, потребляемая насосом;
Nмех - мощность механических потерь насоса;
t - температура жидкости;
z - коэффициент сопротивлений элементов трубопровода;
r - плотность жидкости;
y - коэффициент локальных гидравлических сопротивлений;
e - коэффициент магистральных гидравлических сопротивлений;
m - коэффициент динамической вязкости;
v1 - вязкость жидкости при t = 50oС;
l, d, f - длина, диаметр и площадь поперечного сечения проточной части трубопровода;
n - показатель степени, зависящий от температуры.
РИСУНКИ
Рисунок 1
Похожие патенты:
Устройство для измерения расхода // 1830452
Турбинный расходомер // 1820221
Устройство для измерения расхода жидкости // 1800275
Устройство для измерения расхода вещества // 1789861
Датчик расхода для насосного агрегата // 1779939
Расходомер насосного агрегата // 1779938
Способ определения расхода газа и жидкости // 1760333
Расходомер газоводонасыщенной нефти // 1700368
Датчик турбинного расходомера // 1652824
Изобретение относится к приборам для измерения расхода вязких жидкостей и предназначено для использования в нефтяной, химической, пищевой и других отраслях народного хозяйства, где необходимо производить измерение расходов вязких жидкостей
Расходомер жидкости // 1642237
Изобретение относится к приборостроению , а именно к устройствам измерения расхода жидкости
Счетчик газа - расходомер // 2123666
Изобретение относится к устройствам, предназначенным для измерения объема (расхода) газожидкостной среды, преимущественно газа, протекающего по трубопроводам и поступающего потребителю под относительно низким давлением (от 20 мм вод
Способ измерения количества воды, закачиваемой центробежным электронасосом в нефтяные пласты // 2176732
Изобретение относится к области добычи нефти и может быть использовано для измерения количества закачиваемой центробежными насосами воды в нефтяные пласты
Массовый турбинный расходомер // 2193757
Изобретение относится к технике измерения массового расхода потоков жидкости или газа и может быть использовано во всех отраслях промышленности для учета и точного дозирования различных жидких сред
Скважинный расходомер // 2205952
Изобретение относится к исследованию скважин и может быть использовано при построении профиля притока или поглощения в скважинах с малой производительностью
Турбинный расходомер // 2324146
Изобретение относится к измерительной технике и может быть использовано, в частности, для измерения расхода жидкостей и газов
Система топливопитания двигателя // 2325547
Изобретение относится к системам топливопитания двигателей транспортных средств, в топливном баке которых возможно накопление подтоварной воды, поступающей вместе с топливом или конденсирующейся из воздуха, в частности к системам, обеспечивающим слив подтоварной воды, недопущение подачи воды вместе с топливом в двигатель и предотвращение несанкционированного слива топлива взамен подтоварной воды
Система выпрямления струйного потока // 2330998
Изобретение относится к системе выпрямления потока текучей среды посредством выпрямляющего устройства на участке трубопровода
Турбинный расходомер // 2337321
Изобретение относится к измерительной технике и может быть использовано для измерения расхода жидкостей и газов
Турбинный расходомер // 2350910
Изобретение относится к измерительной технике и может быть использовано для измерения расхода жидкостей и газов
Турбинный преобразователь расхода // 2360218
Изобретение относится к измерительной технике и может использоваться для измерения расхода и количества жидкостей и газов