Способ регулирования термического сопротивления тепловой трубы
Использование: в теплотехнике. Сущность изобретения: термическое сопротивление регулируют путем нагрева теплоносителя в жидкостном канале до температуры ниже температуры фазового перехода при охлаждении испарителя или конденсатора. При нагреве испарителя или конденсатора теплоноситель в этом канале охлаждают до температуры не ниже температуры кристаллизации. 3 ил.
Изобретение относится к области теплотехники, в частности к тепловым трубам (ТТ) - устройства, работающим по замкнутому испарительно-конденсационному циклу с циркуляцией теплоносителя за счет сил поверхностного натяжения, и может быть использовано для стабилизации температуры при охлаждении различного рода теплонагруженных объектов.
Известен способ регулирования термического сопротивления ТТ с помощью резервуара, содержащего неконденсирующийся газ. Резервуар сообщен с конденсатором тепловой трубы. Регулирование осуществляется за счет изменения поверхности конденсации, которая зависит от давления в ТТ и количества неконденсирующегося газа. Недостаток данного способа - необходимость введения в рабочее пространство ТТ помимо собственно теплоносителя некоторого количества неконденсирующегося газа. В ряде случаев это может привести к диффузии газа из зоны конденсации в транспортную и испарительную зоны ТТ. При этом снижается теплопередающая способность ТТ, а также могут иметь место нежелательные эффекты, аналогичные тем, которые дает газовыделение в тепловой трубе. Известен также способ регулирования термического сопротивления ТТ, заключающийся в воздействии на теплоноситель в транспортной зоне, конкретно - в регулировании гидравлического сопротивления парового канала путем изменения его проходного сечения. Изменение проходного сечения может осуществляться, например, за счет использования регулирующей заслонки. При таком способе регулирования каждому проходному сечению парового канала в месте регулирования соответствует максимальная тепловая нагрузка, определяемая в конечном счете располагаемым капиллярным напором и полным гидравлическим сопротивлением ТТ. Таким образом, для ТТ заданных параметров при заданной тепловой нагрузке определено минимальное проходное сечение парового канала в месте регулирования. Дальнейшее его уменьшение при заданной тепловой нагрузке приводит к тому, что перенос тепла по рабочему пространству ТТ становится невозможным. В таком случае тепло может передаваться лишь по корпусу тепловой трубы за счет теплопроводности последнего. При этом термическое сопротивление тепловой трубы резко возрастает. В результате данный способ позволяет осуществлять двухпозиционное регулирование термического сопротивления и изменение его по закону R =
















Sк=



Тст к - средняя температура стенки конденсатора на участке конденсации, оС. Остальная часть поверхности конденсатора работает на переохлаждение сконденсировавшегося теплоносителя. Температура жидкости на выходе из конденсатора Тж может быть определена из следующей общей зависимости:
Тж = Тп - f (Q, Tохл,



lохл - длина участка переохлаждения, м;
А - комплекс, определяемый геометрическими параметрами конденсатора;
В - комплекс, определяемый теплофизическими параметрами теплоносителя. Очевидно, что минимальное возможное значение Тж = Тохл. Средняя температура конденсатора определяется по следующей общей формуле:






f - функция, определяемая выражением (7). Величина температуры пара контурной ТТ определяется целым рядом факторов и физических процессов, при этом справедливо соотношение








Ср - теплоемкость жидкости, Дж/кг

To=Tж+Q/Cp

To= T





To= Tп


Кроме того, исходя из соотношений (4) и (5) имеем:
Tп= RQ+


Tо= (RQ+





Окончательная формула с учетом (10) и (11) приобретает вид:
Qр= g









Ткрист < To < Tкип, где Ткип - температура кипения данного теплоносителя при давлении, соответствующем по линии насыщения Тп,
Ткрист - температура кристаллизации данного теплоносителя. Данное ограничение связано с необходимостью иметь в жидкостном канале теплоноситель в жидкой фазе. Кроме того, необходимо обеспечить такие условия работы контурной ТТ, чтобы полость испарителя 1 была частично заполнена жидкостью и имелась свободная поверхность. Уравнение (9) справедливо лишь при наличии такой свободной поверхности. Термическое сопротивление повышается при увеличении значения То, т.е. в качестве управляющего воздействия используется нагрев и уменьшается при охлаждении. Таким образом, управляющий нагрев целесообразно применять при охлаждении испарителя или конденсатора, с тем чтобы поднять термическое сопротивление до требуемого значения, а управляющее охлаждение - при нагреве испарителя или конденсатора, когда требуется соответствующее снижение термического сопротивления. В качестве регулятора температуры жидкости в зависимости от конкретных условий могут использоваться проточный теплообменник, регулируемый нагреватель, экран-радиатор жалюзийного типа с поворотными створками, лазерный излучатель и т.д. П р и м е р. Контурная тепловая труба, заправляемая аммиаком. Длина транспортной зоны 4 м, тепловая нагрузка 200 Вт, охлаждение принудительное, температура охлаждения 15оС. Транспортный жидкостной канал 5 на ограниченном участке, примыкающем к испарителю 1, подвергался нагреву или охлаждению так, что температура жидкости менялась от -20 до +60оС. Результаты измерений и расчетов приведены на фиг.3. Как видно, термическое сопротивление 0,05 до 0,27 К/Вт, т.е. более чем в 5 раз. Таким образом, предлагаемое техническое решение позволяет эффективно регулировать термическое сопротивление контурных тепловых труб путем воздействия на теплоноситель в транспортном жидкостном канале.
Формула изобретения
Qр = g







где Qр - величина регулируемого теплового воздействия, Вт;
g - расход теплоносителя в тепловой трубе, кг/с;
Cр - теплоемкость жидкого теплоносителя, дж/кг К;
R - термическое сопротивление тепловой трубы, К/вт;
Q - тепловой поток, передаваемый тепловой трубой, Вт;
q - плотность теплового потока в испарителе, Вт/м2;


Tж - температура жидкости на выходе из конденсатора, К;

L - скрытая теплота испарения, Дж/кг;



РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3
Похожие патенты:
Теплообменник // 2013746
Изобретение относится к теплотехнике, а именно к теплообменным устройствам типа "газ-газ", предназначенным для утилизации тепла, отвода тепла из герметичных объемов и т
Способ работы тепловой трубы // 2013745
Изобретение относится к области машиностроения, а именно к способам работы тепловых труб, и может быть использовано в устройствах, в которых требуется изменение степени нагрева и охлаждения или попеременные нагрев и охлаждение объектов, в частности в тепловых сорбционных компрессорах, термических процессах, технологических реакторах и т
Теплопередающее устройство // 2013744
Способ преобразования тепловой энергии // 2013743
Тепловая труба // 2013742
Изобретение относится к теплотехнике и может быть использовано при создании тепловых труб со вспомогательным насосом
Термосифонный теплообменник // 2008600
Изобретение относится к теплообменной технике и может быть использовано в тех отраслях промышленности, в которых присутствуют процессы теплопередачи
Изобретение относится к области теплотехники и может быть использовано при разработке систем охлаждения, основанных на использовании тепловых труб
Конденсаторное устройство // 2001371
Контурная тепловая труба // 1834470
Изобретение относится к области теплотехники и может быть использовано в системах охлаждения тепловыделяющих приборов
Термосифон // 2104456
Изобретение относится к устройствам для теплообмена, в частности, к термосифонам
Изобретение относится к энергетике и может быть использовано в энергетических установках с преобразованием излучения в тепловую и электрическую энергию, например солнечного, лазерного и др
Испаритель // 2105939
Термоэлектрический блок (варианты) // 2112908
Изобретение относится к термоэлектрическим устройствам и может быть использовано в качестве теплового насоса или холодильной машины, реализующих эффект Пельтье, для нагрева или охлаждения газов, жидкостей и других тел, а также в качестве электрогенератора, реализующего эффект Зеебека
Холодильник // 2115869
Изобретение относится к холодильной технике, в частности к конструкции холодильников, например домашних бытовых холодильников или низкотемпературных термостатов для термостабилизации элементов электронной аппаратуры
Тепловая машина для получения холода и тепла // 2118768
Изобретение относится к тепловым машинам, предназначенным для получения холода и тепла
Теплообменный аппарат // 2119630
Тепловая труба // 2119631
Изобретение относится к тепловым трубам с электрическим разогревом и может быть использовано в отоплении, установках для нагрева жидкости, в парниках и теплицах для подогрева почвы и т.п
Изобретение относится к теплоносителям для тепловой трубы, применяемой в качестве устройства для рекуперации теплоты от выхлопных газов
Тепловая труба космического аппарата // 2122166