Пластмассовый сцинтиллятор
Использование: создание материалов для сцинтилляционной техники, к пластмассовым сцинтилляторам с малой длительностью сцинтилляционного импульса и высоким световым ходом. Сущность изобретения: быстродействующий сцинтиллятор содержит, мас. % : активирующая добавка 2-(2-метилфенил)-5-(4 - бифенилил)-оксадиазол-1, 3, 4, 1,5 - 2,0; смещающая спектр добавка 1-(5-фенилоксазолил-2)-4-[5-(2-метилфенил) оксазолил-2] бензол) 0,08 - 0,1; поли-п-метилстирол до 100. 1 табл.
Изобретение относится к созданию материалов для сцинтилляционной техники, в частности к пластмассовым сцинтилляторам с высоким временным разрешением (малой длительностью сцинтилляционного импульса).
Сцинтилляторы, обладающие малым временем высвечивания, в сцинтилляционной технике носят название быстродействующих. Такие сцинтилляторы используются при диагностике термоядерного синтеза, в рентгеновской и гамма-астрономии и т. д. Основное требование, предъявляемое к быстродействующим пластмассовым сцинтилляторам, малое время высвечивания, менее 1 нс. Это дает возможность максимально точно определить координаты попадания частицы в сцинтиллятор и возможность работы в условиях больших нагрузок. Время высвечивания является основной сцинтилляционной характеристикой быстродействующих пластмассовых сцинтилляторов. Необходимым условием быстродействующих пластмассовых сцинтилляторов является высокий световой выход, максимально большая добротность сцинтилляционного импульса, оцениваемая величиной, равной отношению светового выхода сцинтиллятора к длительности светового импульса. Известен пластмассовый сцинтиллятор NE-111А, представляющий собой твердый раствор 2-(4-бифенилил)-5-фенилоксадиазол-1,3,4 (с концентрацией 40 г/л) в поливинилтолуоле [1] . Время высвечивания этого сцинтиллятора 1,65 нс, световыход составляет 0,46 условных единиц светового выхода (уесов). Рабочий диапазон температуры, где достигается постоянство светового выхода, составляет (-60+20оС). Известен быстродействующий пластмассовый сцинтиллятор ВС 418 на поливинилтолуоле [2] . В каталоге состав этого сцинтиллятора не указан, известны лишь его физико-химические и сцинтилляционные параметры и назначение - использование в экспериментах, где требуется высокое временное разрешение сцинтилляторов. Максимум флуоресценции этого сцинтиллятора лежит при 391 нм, в УФ-области спектра. Время высвечивания сцинтиллятора составляет 1,36 нс, световой выход равен 0,56 уесв. Рабочий диапазон температуры, при котором световыход остается неизменным, составляет (-60+20оС). К недостаткам известных пластмассовых сцинтилляторов относится длительное время высвечивания, более 1 нс, в то время как современный уровень развития сцинтилляционной техники требует использование сцинтилляторов с длительностью сцинтилляционного импульса значительно меньшей 1 нс. Световой выход обоих известных сцинтилляторов невелик (0,46 и 0,56 уесв). Спектр излучения известных сцинтилляторов лежит в ультрафиолетовой области спектра, в то время как максимальная чувствительность обычно используемых в экспериментах коротковолновых фотоэлектронных умножителей лежит в видимой области спектра (более 400 нм). В связи с этим чрезвычайно важно, чтобы максимумы излучения люминесцирующих добавок, вводимых в пластмассовый сцинтиллятор, лежали в видимой области спектра, в области максимальной чувствительности фотоумножителя. Известен отечественный быстродействующий пластмассовый сцинтиллятор на основе полистирола и смеси люминесцирующих добавок - паратерфенила (3-4 мас. % ) или 2,5-дифенилоксазола (4-7 мас. % ) в качестве первичной люминесцирующей добавки и вторичной люминесцирующей добавки - 4,45-дибром-2', 5', 25, 55 - тетраметил-п-квинквифенила (2-5 мас. % ) (3). Последняя добавка играет роль не только смесителя спектра в данной композиции, но и "утяжеляющей" добавки, поскольку содержит два "тяжелых" атома брома. Эффект "тяжелого" атома проявляется в значительном снижении времени высвечивания, которое у данного сцинтиллятора составляет 0,74-0,84 нс, величину менее 1 нс. Положительное влияние атомов брома на длительность сцинтилляционного импульса сопровождается одновременным отрицательным влиянием этих атомов на световыход пластмассового сцинтиллятора, который составляет всего лишь 0,23-0,26 уесв. Недостатки указанного сцинтиллятора: очень низкий световыход, сложная технология получения "утяжеляющей" добавки, использование люминесцирующих добавок в композиции в весьма значительных количествах (4-7 мас. % первичная люминесцирующая добавка и 2-5 мас. % вторичная добавка), что значительно повышает стоимость пластмассового сцинтиллятора. Все указанные недостатки делают пластмассовый сцинтиллятор малодоступным технологически и для использования в ядерно-физических экспериментах. Недостатком известного сцинтиллятора является большая длительность сцинтилляционного импульса, сравнительно низкий световой выход, малодоступность сдвигающей спектр люминесцирующей добавки. Это весьма ограничивает возможности его применения в сцинтилляционных детекторах. По достигаемому эффекту и технической сущности пластмассовый сцинтиллятор [3] является наиболее близким к предлагаемому решению и выбран в качестве прототипа. Целью предлагаемого изобретения является уменьшение длительности сцинтилляционного импульса при одновременном повышении светового выхода. Цель достигается тем, что пластмассовый сцинтиллятор, включающий замещенную полистирольную основу, активирующую и смещающую спектр, люминесцирующие добавки, согласно изобретению, содержит в качестве основы поли-п-метилстирол, в качестве активирующей добавки -2-(2-метилфенил)-5) (4-бифенилил)-оксадиазол-1,3,4, в качестве смещающей спектр добавки -1-(5-фенилоксазолил-2)-4 [5-(2-метилфенил)-оксазолил-2] бензол при соотношении компонентов, мас. % : 2-(2-метилфенил)-5-(4-би- фенилил) - оксадиазол-1,3,4 1,5-2,0 1-(5-фенилксазолил-2)- 4[5-2-метилофенил) ок- сазолил-2] бензол 0,08-0,1 поли-п-метилстирол до 100,0 Разработанный состав сцинтиллятора представляет собой удачное сочетание полимерной основы - поли-п-метилстирола со смесью люминесцирующих добавок, что позволило при значительно меньших концентрациях активирующей добавки в 2-4 раза, а спектросмещающей добавки по сравнению с прототипом - в 20-50 раз достичь более высокого эффекта: значительно увеличить быстродействие сцинтиллятора и одновременно повысить его световой выход. Малая длительность сцинтилляционного импульса достигается за счет эффективного переноса энергии электронного возбуждения от полимерной основы - поли-п-метилстирола к активирующей добавке - 2-(2-метилфенил)-5-(4-бифенилил) оксадиазол-1,3,4 имеющей малую длительность возбужденного состояния (менее 1 нс) и далее к добавке, смещающей спектр в видимую область 1-(5-фенилоксазолил-2)-4-[5-(2-метилфенил) оксазолил-2] бензол. Последняя композиция играет роль не только спектросмещающей добавки, но и вносит существенный вклад в величину сцинтилляционного импульса. Суммарный вклад двух люминесцирующих добавок выражается в значительном уменьшении времени высвечивания композиции пластмассового сцинтиллятора по сравнению с прототипом и известными сцинтилляторами. Такой эффект проявляется в конкретном твердом растворе пластмассового сцинтиллятора при определенном массовом соотношении компонентов. Представлены сравнительные спектрально-люминесцентные и сцинтилляционные характеристики известных и описываемых сцинтилляторов. Изменение в составе сцинтиллятора хотя бы одного компонента или их соотношении приводит к изменению сцинтилляционных свойств композиции (см. таблицу). Сцинтиллятор разработан на основании ряда проведенных экспериментов с варьируемыми концентрациями двух люминесцирующих добавок и в результате поиска полимерной основы-п-метил-стирола. Указанные люминесцирующие добавки в пластмассовых сцинтилляторах ранее не использовались. 2-(2-метилфенил)-5-(4-бифенилил) оксадиазол-1,3,4 использован в качестве активатора в жидких сцинтилляторах. 1-(5-фенилоксазолил-2)-4-[5-(2-метилфе- нил)оксазолил-2] бензол-оригинальное соединение, не описанное в литературе, полученное по методике синтеза 2,5-диарилоксазолов по схеме:




Вычислено, % : С 79,36; Н 4,76; N 7,47
Максимум поглощения в толуоле 365 нм. Максимум люминесценции в толуоле 425 нм. Абсолютный квантовый выход люминесценции составляет 0,78. Пластмассовый сцинтиллятор заявляемого состава можно получить в виде пленок и блоков с помощью любого известного способа полимеризации: термической полимеризацией, прессованием, экструзионным методом, методом испарения растворителя. П р и м е р 1 (таблица, поз. 5). В ампулу из термостойкого стекла загружают 1,0 мас. % 2-(2-метилфенил)-5-(4-бифенилил)-оксадиазол-1,3,4 2М-РВД) и 0,05 мас. % 1-(5-фенилоксазолил-2)-4-[5-(2-метилфенил) оксазолил-2] бензол [2М-РОРОР] и заливают 98,95 мас. % свежеперегнанного п-метилстирола. Содержимое ампулы продувают азотом в течение 5 мин. Затем ампулу запаивают и помещают в термостат при t= 150оС и выдерживают при этой температуре в течение 72 ч. Для снятия напряжений, развивающихся в блоке, проводят отжиг от 5оС за 2 ч до 80оС. Ампулы разбивают и полученные образцы помещают в термостат для самоохлаждения до комнатной температуры. Термостат отключают. Образцы освобождают от стекла и подвергают механической обработке (шлифовка и полировка). Выходные данные полученного образца:

В таблице приведены сравнительные спектрально-люминесцентные и сцинтилляционные характеристики известных и заявляемого сцинтиллятора. Световой выход всех образцов сцинтилляторов измеряли по среднему току фотоэлектронного умножителя ФЭУ-52 при неизменных условиях возбуждения

Формула изобретения
2-(2-Метилфенил)-5-(4-бифенилил)-оксадиазол-1,3,4 1,5 - 2,0
1-(5-Фенилоксазолил-2)-4-[5-(2-метилфенил)оксазолил-2)] бензол 0,08 - 0,1
п-Метилстирол До 100
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3
Похожие патенты:
Жидкий сцинтиллятор // 1769600
Изобретение относится к созданию материалов для сцинтилляционной техники, а точнее к эмульсионным жидким сцинтилляторам
Органический сцинтиллятор // 1581046
Изобретение относится к технике измерения ионизирующих излучений с помощью органического сцинтиллятора Целью изобретения является увеличение сцинтилляционной эффективности и повышение прозрачности сцинтиллятора Цель достигается использованием в качестве смесителя спектра соединении У общей формулы где «,-нзс( «Ll Л«Г в количества ния коется и и ель теля улы где 0,01 - 0,06 мас.% при содержание активатора s,0 - 2,0 мас%
Пластмассовый сцинтиллятор // 1508558
Изобретение относится к химии полимеров и может быть использовано в дозиметрии
Жидкостной сцинтилляционный счетчик // 1140585
Изобретение относится к ядерной физике и может быть использовано в атомной технике, медицине, в частности в экспериментах ядерной физики по изучению 2 -распада
Блок сцинтилляционного детектора // 2160910
Изобретение относится к области измерений ядерных излучений и может быть использовано в высокочувствительных сцинтилляционных счетчиках, предназначенных для определения низкоэнергетических бета-излучателей, например углерода-14, трития
Изобретение относится к области радиоэкологического мониторинга, может быть использовано для измерения содержания радионуклидов в различных компонентах окружающей среды при обработке результатов измерений в комплексе аппаратно-программных средств, позволяющих оперировать с большими массивами радиоэкологической информации
Способ жидкосцинтилляционного альфа-спектрометрического измерения активности радионуклидов // 2209447
Изобретение относится к жидкосцинтилляционной альфа-спектрометрии и, в частности, к способам определения активности альфа-излучающих радионуклидов, например, в пробах промежуточных и конечных продуктов технологий получения радиоизотопов и переработки отработавшего ядерного топлива, а также в пробах аэрозольных выбросов, водных сбросов и объектов окружающей среды