Комбинированная парогазовая энергетическая установка и способ ее эксплуатации
Использование: в теплоэнергетике , преимущественно в комбинированных парогазовых установках. Сущность изобретения: комбинированная парогазовая энергетическая установка состоит из, по меньшей мере, одного двигателя 2 внутреннего сгорания, работающего на ископаемом топливе, по меньшей мере, одного парового контура 1 и, по меньшей мере, одного теплообменника-утилизатора 3. Теплообменник-утилизатор 3 установлен за двигателем внутреннего сгорания 2. Паросиловой контур 1 включает в себя, наряду с несколькими паровыми турбинами 12, 13, генератор 14, ряд других вспомогательных агрегатов 15, 16 и реактор 11 с водяным охлаждением, который производит насыщенный пар из поступающего в него количества питательной воды, предварительно подогреваемой в одной из ступеней поверхности нагрева теплообменника 3. Это количество насыщенного пара подводится затем в следующую ступень поверхности нагрева теплообменника 3, где и происходит окончательное приготовление пара для паровых турбин 12, 13. 2 с. п. , 7 з. п. ф-лы, 4 ил.
Изобретение относится к парогазовым энергетическим установкам и, согласно ограничительной части п. 1 формулы изобретения, затрагивает также способ функционирования такой установки.
В случае атомной энергетической установки с реактором, имеющим водяное охлаждение, может вырабатываться насыщенный пар лишь ограниченного давления. Такой реактор работает, согласно уровню развития техники на сегодняшний день, с паром имеющим ограниченные параметры, например давление 63 Бар и температуру 280оС, и обеспечивает таким образом КПД преобразования производимой в реакторе энергии в электрическую, равный приблизительно 33% . Само собой разумеется, что такая величина КПД преобразования не в состоянии удовлетворить современные требования по экономичности процесса выработки электроэнергии. В случае энергетических установок работающих только на ископаемом топливе уровень техники представляющий собой газотурбинную установку с устройством для утилизации тепловых потерь (котел-утилизатор), может быть расширен путем комбинирования их с подключаемой за ними паротурбинной установкой, хотя сами паротурбинные установки могут достигать значений КПД более 40% . Эти, так называемые, комбинированные установки отличаются очень хорошим КПД преобразования энергии, который для них колеблется в пределах 50-52% . Такие высокие значения КПД преобразования энергии возникают в результате совместной работы и, по меньшей мере, одного контура паротурбинной установки, при этом отработавшие газы из газотурбинной установки направляются через котел-утилизатор, в котором их остаточный тепловой потенциал используется для производства пара, необходимого для привода паровой турбины. При этом, в комбинированных установках следует отметить тот факт, что протекающее изотермически испарение питательной воды в котле-утилизаторе естественно происходит при падении температуры отработавших газов, причем в середине процесса возникает совершено нежелательный перепад температур. В результате этого в котле-утилизаторе неизбежно возникают совершенно ненужные дополнительные потери энергии (потери работоспособности отработанных газов), которые, если проследить за ними по диаграмме Т/Q, могут быть изображены в виде плоскости между круто падающей кривой температуры отработавших газов в котле-утилизаторе и пологой кривой процесса испарения питательной воды. Правда, в данном случае посредством применения котла-утилизатора со ступенями давления может быть проведено корректирование при котором не просто будет обеспечить работу более двух ступеней давления как с точки зрения конструкции, так и с точки зрения эксплуатации, так что с помощью такого котла-утилизатора нельзя будет в желаемой степени снизить потери энергии газа. Известна комбинированная парогазовая установка, содержащая двигатель внутреннего сгорания, выполненный в виде газотурбинного двигателя, на выхлопе газовой турбины которого установлен теплообменник-утилизатор со ступенями поверхности нагрева, включенной в паросиловой контур. При этом одна из ступеней вышеотмеченной поверхности нагрева размещена вне теплообменника-утилизатора и установлена в камере сгорания. Паросиловой контур содержит паровую турбину и теплообменник, причем вышеуказанная поверхность нагрева включена в паросиловой контур за теплообменником. Газотурбинный двигатель работает на ископаемом топливе. Такая установка позволяет использовать теплоту отработавших в газовой турбине газов для нагрева теплоносителя замкнутого паросилового контура в последовательно соединенных ступенях поверхности нагрева, размещенных в теплообменнике-утилизаторе и камере сгорания. Образованный таким образом пар теплоносителя замкнутого контура срабатывается в паровой турбине с выработкой энергии. Именно в этой области изобретение может оказать существенную помощь. Целью изобретения, как указано в формуле изобретения, является сведение до минимума потерь эксергии в процессе работы парогазовых энергетических установок указанного выше типа. Существенные преимущества изобретения следует видеть в том, что потенциал эксергии зависит от устройства для предварительного подогрева питательной воды, оптимально использующего вырабатываемую атомным реактором тепловую энергию, и от перегрева пара в котле-утилизаторе газовой турбины. Ввиду того, что как предварительный подогрев питательной воды, так и перегрев пара осуществляется в противотоке с процессом охлаждения дымовых газов, в данном случае не возникают потери эксергии, естественно превышающие требуемую степень теплопередачи. Если рассматривать проблему в целом, на всем протяжении процесса подвода теплового потока, который делится на тепло, вырабатываемое в атомной установке и в установке, работающей на ископаемом топливе, минимальные возможные потери эксергии и таким образом наименьшие потери КПД преобразования тепловой энергии в электрическую являются результатом плохой термической подгонки полного сопротивления. Решающее значение имеет, однако, то обстоятельство, что это особенно касается части энергии, вырабатываемой при сжигании ископаемого топлива, а именно потому, что при этом сводится до минимума загрязнение окружающей среды продуктами горения ископаемых горючих материалов. Для случая применения природного газа, таким образом, дополнительно получаемая из ископаемого топлива электроэнергия может быть реализована с минимальными выбросами углекислого газа. Другие преимущества изобретения связаны с увеличением мощности атомной энергетической установки за счет подключения перед ней некоторого числа двигателей внутреннего сгорания, преимущественно газотурбинных установок. Если бы корректирущие мероприятия при упомянутой конфигурации схемы установки были незначительными или отсутствовали вовсе в отношении поглощающей способности паровой турбины и мощностных возможностей генератора, то можно было бы предусмотреть схему, при которой излишек пара ответвляется на ступени перегрева в теплообменник и в контур двигателей внутреннего сгорания, преимущественно в их камеры сгорания, и обеспечивает тем самым компенсацию потерь мощности, имеющих место в паровом контуре атомной энергетической установки за счет повышения мощностных параметров двигателей внутреннего сгорания. Другим преимуществом изобретения является приспосабливаемость схемы. При ограничиваемом в количественном и/или в термическом отношении потенциале отработавших газов, освобождаемых из двигателей внутреннего сгорания, нет необходимости в сокращении номинальной мощности реактора. Т. к. вполне возможным является предварительный подогрев в котле-утилизаторе лишь части потока питательной воды, поступающей из конденсатора и перегрев лишь части получаемого в реакторе пара, это позволяет устанавливать соответственно меньшую установку. Однако, требуемая для этого часть энергии, получаемая от сжигания ископаемого топлива, преобразуется в соответствии с запрограммированным улучшенным КПД преобразования энергии. Другое преимущество изобретения можно усмотреть в том, что схема может быть в значительной степени расширена и предполагает варианты комбинирования конструкции таким образом, что потенциал ступени предварительного подогрева в котле-утилизаторе используется в зависимости от потребности для эксплуатации постороннего потребителя тепла. Преимущественные и целесообразные усовершенствования технического решения поставленной перед изобретением задачи характеризуются в прочих зависимых пунктах формулы изобретения. Ниже изобретение изображается схематично и разъясняется на примере варианта исполнения, изображенного на чертежах. Все не требуемые для непосредственного разъяснения сути изобретения элементы при этом опущены. Направление течения сред-носителей энергии указано стрелками. На различных фигурах одни и те же элементы отмечены одинаковыми позициями. На фиг. 1 изображена схема энергетической установки, которая представляет собой сочетание газотурбинной установки и ядерной энергетической установки; на фиг. 2 -










Формула изобретения
1. Комбинированная парогазовая энергетическая установка, включающая двигатель внутреннего сгорания, работающий на ископаемом топливе и выполненный в виде газотурбинной установки с газовой турбиной, подключенный к выхлопу последней теплообменник-утилизатор отходящих газов, выполненный с последовательно соединенными ступенями поверхности нагрева теплоносителя, при этом по крайней мере одна из них размещена вне теплообменника-утилизатора и подключена к дополнительному источнику теплоты, а также паросиловой контур с теплоносителем, включающий по меньшей мере одну паровую турбину и теплообменник, при этом контур подключен к теплообменнику-утилизатору через его поверхность нагрева, причем последняя размещена в контуре за его теплообменником по ходу теплоносителя, отличающаяся тем, что, с целью повышения эффективности путем снижения энергетических потерь, дополнительный источник теплоты выполнен в виде реактора, при этом ступень поверхности нагрева, включенная перед соединенной с реактором ступенью, выполнена с возможностью подогрева по крайней мере части подводимого к последней жидкого теплоносителя, а ступень поверхности нагрева, расположенная за соединенной с реактором ступенью, выполнена с возможностью перегрева по крайней мере части полученного в последней насыщенного пара теплоносителя. 2. Установка по п. 1, отличающаяся тем, что реактор выполнен с водяным охлаждением. 3. Установка по п. 1, отличающаяся тем, что реактор выполнен с охлаждением водяным раствором охлаждающего вещества. 4. Установка по пп. 1 - 3, отличающаяся тем, что реактор выполнен с устройством для передачи тепла теплоносителю. 5. Установка по пп. 1 - 4, отличающаяся тем, что теплообменник-утилизатор выполнен в виде котла-утилизатора. 6. Установка по п. 5, отличающаяся тем, что котел-утилизатор выполнен в виде отдельных устройств со ступенями для предварительного подогрева, перегрева и по выбору промежутточного подогрева теплоносителя. 7. Способ эксплуатации комбинированной парогазовой энергетической установки, включающий использование теплоты отработавших в газовой турбине двигателя внутреннего сгорания газов для нагрева теплоносителя замкнутого паросилового контура в последовательно соединенных ступенях поверхности нагрева, размещенных в теплообменнике-утилизаторе, а также дополнительный нагрев теплоносителя от постороннего источника теплоты посредством размещения по меньшей мере одной ступени поверхности нагрева вне теплообменника-утилизатора и подсоединения ее к дополнительному источнику теплоты, отличающийся тем, что, с целью повышения, эффективности, дополнительный нагрев теплоносителя ведут теплотой реактора, который используют в качестве постороннего источника теплоты, при этом использование теплоты отработавших в газовой турбине газов ведут в ступенях поверхности нагрева, расположенных в паросиловом контуре до и после подсоединенной к реактору ступени соответственно для нагрева и перегрева по крайней мере части подводимого к ним жидкого теплоносителя и полученного в подсоединенной к реактору ступени насыщенного пара теплоносителя, причем при ограниченной способности одной или нескольких паровых турбин паросилового контура часть пара из последнего подают в контур двигателя внутреннего сгорания до газовой турбины. 8. Способ по п. 7, отличающийся тем, что подаваемую в контур двигателя внутреннего сгорания часть пара отбирают от перегретого пара за ступенью поверхности нагрева, размещенной в паросиловом контуре после ступени, подсоединенной к реактору. 9. Способ по п. 7, отличающийся тем, что часть полученного в подсоединенной к реактору ступени поверхности нагрева насыщенного пара отводят в одну или несколько паровых турбин паросилового контура.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4