Способ экспресс-измерения ресурса работы лазерных зеркал и устройство для его осуществления
Использование: оптическое приборостроение, лазерная техника. Сущность изобретения: выбирают эталонное зеркало с известным ресурсом работы, формируют плазмообразующий импульс, последовательно воздействуют им на выбранное эталонное и испытуемое зеркала, регистрируют форму импульса и время инициирования плазмы на эталонном и испытуемых зеркалах, определяют поверхностную плотность энергии лазерного излучения на момент инициирования плазмы и, сравнивая отношения значений времени инициирования и плотности энергии или только плотности энергии в зависимости от формы импульса, определяют ресурс работы лазерных зеркал. Устройство для экспресс-измерения ресурса лазерных зеркал содержит импульсный источник излучения, фокусирующую оптику, блок измерения формы и энергии импульса излучения, оптически связанный с источником излучения, фотоприемник, микропроцессор, ячейку И - НЕ, ячейку И, синхрогенератор, счетчик и делитель. 1 з. п. ф-лы, 1 ил.
Изобретение относится к оптике и лазерной технике и может быть использовано в отраслях промышленности, применяющих лазерную технологию и производящих лазерные установки.
Наиболее близким техническим решением к изобретению является способ определения стойкости диэлектрических слоев к лазерному излучению, основанный на использовании частотно-импульсного лазерного излучения облучающего локальные области диэлектрических слоев. Этот способ не позволяет определить ресурс работы зеркал, приводит к существенному изменению оптико-физических свойств исследуемой области поверхности зеркала, требует значительных затрат времени и не позволяет достоверно судить о свойствах всей поверхности зеркала. Согласно изобретению выбирают эталонное зеркало с известным ресурсом работы, формируют плазмообразующий лазерный импульс, последовательно воздействуют им на выбранные эталонное и испытуемое зеркала, регистрируют время инициирования плазмы на каждом зеркале, фиксируют форму импульса и поверхностную плотность энергии лазерного излучения на момент инициирования плазмы и, сравнивая отношения значений времени инициирования и плотности энергии или только плотности энергии в зависимости от формы импульса, определяют ресурс работы лазерных зеркал. Способ можно реализовать с помощью устройства, схема которого приведена на чертеже. В качестве прототипа выбрано известное устройство для контроля зеркал, состоящее из импульсного источника излучения, фильтров, фокусирующей оптики, фотоприемника, микропроцессора и станины. Это устройство не позволяет определить ресурс работы лазерных зеркал, который является важнейшей характеристикой зеркала определяющей ее применение. Для реализации способа согласно изобретению в устройство введены блок измерения формы и энергии импульса излучения 1, ячейка "И-НЕ" 2, ячейка "И" 3, синхрогенератор 4, счетчик 5 и делитель 6, причем микропроцессор 7 соединен с первыми выходами блока измерения формы и энергии импульса излучения 1, синхрогенератора 4, делителя 6 и счетчика 5, вход которого соединен с выходом ячейки "И-НЕ" 2, при этом первый вход ячейки "И-НЕ" соединен с фотоприемником 8, второй вход соединен с выходом ячейки "И" 3, соединенным также с входом делителя 6, а первый вход ячейки "И" соединен с вторым выходом блока измерения формы импульса 1 и выходом синхрогенератора 4. Устройство работает следующим образом. Источник излучения 9 (лазер) генерирует лазерный импульс 10, который попадает в блок измерения формы и энергии импульса излучения 1, где определяется его форма и энергия и проходит 11 на фокусирующую оптику 12. Блок измерения 1 может быть реализован на основе проходного болометра или измерителя мощности с делительной пластиной и фотоприемником для определения профиля импульса излучения. Фокусирующая оптика фокусирует излучение на поверхности испытуемого зеркала 3, где образуется плазма 14. Свечение от плазмы попадает на фотоприемник 8, где преобразуется в электрический сигнал 15, поступающий на ячейку "И-НЕ" 2. На эту же ячейку поступает сигнал от ячейки "И" 3, на которую поступают сигналы формы импульса излучения 16 и импульсы синхронизации 17, этот сигнал пропорционален числу импульсов синхронизации, укладывающихся на длительности импульса излучения. Эти импульсы поступают на ячейку "И-НЕ" 2 и проходят через нее при появлении импульса свечения плазмы с фотоприемника 8, прошедшие импульсы поступают на счетчик 5 и сигнал от него идет на микропроцессор 7, где обрабатывается по заложенному алгоритму и определяется время инициирования плазмы. От ячейки "И" прошедшие импульсы также поступают на делитель 6, где происходит их пересчет с коэффициентом, являющимся результатом анализа процессов плазмообразования, произведенного авторами. Результат пересчета, определяющий длительность используемого лазерного импульса, поступает на микропроцессор и определяет дальнейший вид операций с замеренными длительностью импульса, энергией и временем плазмообразования (поступившим со счетчика). Микропроцессор по заложенному алгоритму определяет из их соотношения рабочий ресурс испытуемого зеркала по сравнению с эталонным. Реализация ячеек, делителя, синхрогенератора и микропроцессора возможна на различных сериях современных микросхем, как отечественных так и зарубежных. Наиболее широкое распространение в мощных технологических лазерных установках (резка, сварка) получили СО и СО2 - лазеры, работающие в непрерывном или частотно-импульсном режимах. В лазерах указанного типа используется, как правило, металлические зеркала, на основе которых выполняется также и формирующая оптика. Поэтому физическое обоснование способа экспресс-измерений рабочего ресурса будет ниже дано для металлических зеркал. Последовательность измерительных операций и методика вычисления ресурса слабо зависит от материала подложки и конструкции зеркала, хотя конкретные физические механизмы разрушения могут сильно различаться в зависимости от типа зеркала. Одним из основных механизмов необратимых повреждений металлических зеркал является рекристаллизация внешнего слоя отражающей поверхности. Интенсивность процессов рекристаллизации растет с увеличением температуры и механических напряжений в приповерхностном слое. В случае, когда остаточные механические напряжения малы, необходимым условием рекристаллизации является наличие достаточно больших градиентов температуры, приводящих к возникновению термоупругих напряжений. Поэтому на практике физическое состояние зеркала характеризуется температурой T его внешней поверхности и установившимся перепадом










Е/КТэ (Gо),

Ti = Ki


Ki - характерное значение локальной поглощательной способности i-го зеркала,
Go - плотность потока лазерного излучения. Отношение Аik логарифмических ресурсов зеркал
(Zi = ln (


Aik = ln


Ki





T





txi


Exi=




Для металлических зеркал





. Если время инициирования txi лазерной плазмы
txi


Ki=

Aik= ln






Ki= Tm/




Aik







Таким образом, используя вспомогательный импульсный лазер, определяют пороги Exi, txi образования лазерной плазмы на зеркалах, а затем вычисляют значения Аik = ln


Формула изобретения
РИСУНКИ
Рисунок 1