Устройство для опреснения морской воды

 

Устройство содержит плавучий корпус, выполненный в виде газгольдера, с плавучестью близкой к нулевой. Корпус снабжен средствами его позиционирования на глубинах где термобарические условия соответствуют условиям гидратообразования природного газа и выполнен с возможностью поддержания в его полости термобарических условий на уровне, исключающем диссоциацию гидрата природного газа. Для этого он снабжен средствами теплоизолирования, выполненных в виде теплоизолирующего покрытия корпуса, предпочтительно, съемного и/или охлаждения полости и выполнен с расчетом на внутреннее давление не меньшее давления, соответствующего давлению диссоциации гидрата природного газа при температурном режиме, поддерживаемом в полости газгольдера. Средство для приема воды содержит герметизируемый люк, выполненный с возможностью подводного приема природного газа и с возможностью сообщения полости газгольдера с акваторией. Верхняя часть полости газгольдера снабжена газоотводящим патрубком, а его донная часть снабжена приемным отверстием водоотводящего трубопровода, при этом газгольдер выполнен с возможностью его буксировки судном-буксировщиком, на котором размещены внешний источник хладагента, снабженный средством его прокачки и внешний источник электропитания. Средство охлаждения полости корпуса содержит термоэлектрические охлаждающие элементы, линия питания которых выведена за пределы корпуса и снабжена герметичными разъемами, выполненными с возможностью подключения к внешним источникам электропитания. Кроме того, средство охлаждения полости корпуса содержит каналы для прокачки хладагента, выполненные с возможностью подключения к внешнему источнику хладагента, снабженному средством его прокачки. Средство позиционирования газгольдера, содержит средства его вертикального и горизонтального перемещения в толще воды, например, выполненные в виде

подруливающих устройств, предпочтительно съемных, предпочтительно электроприводных. Полезная модель обеспечивает снижение энергоемкости процесса опреснения за счет использования потенциальной энергии окружающей среды, позволяет упростить конструкции оборудования, обеспечивающего опреснение воды. Кроме того, обеспечивается возможность получения одновременно с пресной водой природного горючего газа. 3 з.п. ф-лы, 1 ил.

Полезная модель относится к устройствам для опреснения морской воды.

Известно устройство для опреснения морской воды, использующее солнечную энергию, электроэнергию для принудительной циркуляции воздуха вентилятором, а также приводы насосов форсуночного (орошающего насадку) и дистиллятного (см. SU 1578082, кл. С02F 1/14, 1990).

Однако эти весьма перспективные устройства пока практического применения не нашли. Это связано с их значительной энергоемкостью. При увеличении единичной производительности устройства существенно возросла бы затрата традиционных источников электроэнергии на приводы вентилятора, а также форсуночного (орошения насадки) и дистиллятного насосов. Например, при площади нагрева оранжереи (камеры) около 0,4 га потребуется затратить до 500 кВт электроэнергии.

Известно устройство для опреснения морской воды, включающее плавсредство, выполненное в виде судна, корпус которого снабжен средством приема морской воды и системой ее опреснения (см. RU 2006124355, 2004 г.).

Недостаток этого решения - громоздкость системы опреснения, выполненной на мембранной основе. Кроме того, устройство характеризуется конструктивной сложностью.

Известно также устройство для опреснения морской воды, содержащее плавучий корпус, снабженный средством приема воды, средством опреснения и средством хранения опресняемой воды (см. 2006112922, 2006 г.).

Недостаток этого решения - высокое энергопотребление установки из-за энергоемкости процесса опреснения, базирующегося на испарении воды и сборе конденсата.

Задача, на решение которой направлено заявленное техническое решение, выражается в обеспечении возможности снижения энергоемкости процесса опреснения, за счет использования потенциальной энергии окружающей среды.

Технический результат, получаемый при решении поставленной задачи, выражается в упрощении конструкции оборудования, обеспечивающего опреснение воды. Кроме того, обеспечивается возможность получения одновременно с пресной водой природного горючего газа.

Для решения поставленной задачи устройство для опреснения морской воды, содержащее плавучий корпус, снабженный средством приема воды, средством опреснения и средством хранения опресняемой воды отличается тем, что плавучий корпус выполнен в виде газгольдера, с плавучестью близкой к нулевой, снабжен средствами его позиционирования на глубинах где термобарические условия соответствуют условиям гидратообразования природного газа, при этом, корпус выполнен с возможностью поддержания в его полости термобарических условий на уровне, исключающем диссоциацию гидрата природного газа для чего, снабжен средствами теплоизолирования, выполненных в виде теплоизолирующего покрытия корпуса, предпочтительно, съемного и/или охлаждения полости и выполнен с расчетом на внутреннее давление не меньшее давления, соответствующего давлению диссоциации гидрата природного газа при температурном режиме, поддерживаемом в полости газгольдера, кроме того, средство для приема воды содержит герметизируемый люк, выполненный с возможностью подводного приема природного газа и с возможностью сообщения полости газгольдера с акваторией, кроме того, верхняя часть полости газгольдера снабжена газоотводящим патрубком, а его донная часть снабжена приемным отверстием водоотводящего трубопровода, при этом газгольдер выполнен с возможностью его буксировки судном-буксировщиком., на котором размещены внешний источник хладагента, снабженный средством его

прокачки и внешний источник электропитания

Кроме того, средство охлаждения полости корпуса содержит термоэлектрические охлаждающие элементы, линия питания которых выведена за пределы корпуса и снабжена герметичными разъемами, выполненными с возможностью подключения к внешним источникам электропитания.

Кроме того, средство охлаждения полости корпуса содержит каналы для прокачки хладагента, выполненные с возможностью подключения к внешнему источнику хладагента, снабженному средством его прокачки.

Кроме того, средство позиционирования газгольдера, содержит средства его вертикального и горизонтального перемещения в толще воды, например, выполненные в виде подруливающих устройств, предпочтительно съемных, предпочтительно электроприводных.

В основе заявленного технического решения лежат свойства смесей воды и газа образовывать специфические соединения без формирования химической связи (газовые гидраты) посредством включения молекул газов (молекулы-гости, или гостевая подсистема) в полиэдрические пустоты льдоподобного каркаса построенного водородно-связанными молекулами воды (каркас хозяина, или подсистема хозяина) без формирования химической связи между молекулами гостей и хозяина. В случаях, если молекула гостя химически не связана с хозяином, т.е. не участвует в построении водного каркаса (взаимодействия гость-хозяин только ван-дерваальсовы), гидратные соединения включения относят к клатратным гидратам, причем если в качестве гостя выступает газообразное при нормальных условиях вещество либо легкокипящая жидкость, то для их обозначения часто используют термин «газовые гидраты». В газовых гидратах молекулы воды, объединенные водородными связями, образуют трехмерную структуру из полостей-клеток, в которые захватываются молекулы газов, таких как метан, аргон, оксиды углерода. Способность воды образовывать гидраты объясняется наличием в ней водородных связей, под

действием которой молекулы воды выстраиваются в геометрически правильные структуры. В присутствии молекул некоторых веществ эта упорядоченная структура стабилизируется и образуется смесь, выделяемая в виде твердого осадка. Кристаллические решетки гидратов имеют сложное, трехмерное строение, где молекулы воды образуют каркас, в полостях которого находятся заключенные молекулы-гости. Стабилизация кристаллической решетки в присутствии молекул-гостей обусловлена ван-дер-ваальсовыми силами, которые возникают из-за межмолекулярного притяжения, не связанного с электростатическим притяжением. Большинство природных газов (СН4, С2H6, C3 H8, CO2, N2, H2S, изобутан, и т.п.) образуют гидраты, которые существуют при определенных термобарических условиях. Они стабильны или при очень низких температурах в условиях вечномерзлых пород на суше, или в режиме сочетания низкой температуры и высокого давления в придонной части осадочной толщи глубоководных районов Мирового океана. При этом молекулы газов преобразуются в твердое кристаллическое вещество консистенции рыхлого льда или мокрого спрессованного снега.

В общем виде состав газовых гидратов описывается формулой М·nН2О, где М- молекула газа-гидратообразователя, n - число молекул воды, приходящихся на одну включенную молекулу газа, причем n - переменное число, зависящее от типа гидратообразователя, давления и температуры.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна".

Результаты поиска показали, что заявленная полезная модель не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного решения преобразований, что обеспечивает положительную реакцию на достижение технического результата - упрощение конструкции

оборудования, обеспечивающего опреснение воды. Кроме того, обеспечивается возможность получения одновременно с пресной водой природного горючего газа.

На фиг.1 схематически показан разрез корпуса устройства для опреснения морской воды (газгольдера).

Газгольдер выполнен в виде корпуса 1, объем полости которого не менее 500 м3 . Корпус должен быть рассчитан на внутреннее давление порядка 20-30 кг/см). Корпус снабжен средствами теплоизолирования и охлаждения полости. Средство теплоизолирования выполнено в виде теплоизолирующего покрытия 2 корпуса. Если в качестве материала для такого покрытия используют материал способный выдерживать многократное его нагружение высоким давлением (при глубинах порядка 1000 м - порядка 100 атм), то такое покрытие может быть постоянным, в противном случае предпочтительно, использовать съемный вариант покрытия. Средство охлаждения полости корпуса выполнено в виде технологического комплекса, включающего термоэлектрические охлаждающие элементы 3, линия питания 4 которых выведена за пределы корпуса газгольдера 1 и снабжена герметичными разъемами 5, выполненными с возможностью подключения к внешним источникам электропитания 6, кроме того, в состав технологического комплекса, входят каналы 7 для прокачки хладагента, образующие трубчатый змеевик, выполненный с возможностью подключения к внешнему источнику хладагента 8, снабженному средством его прокачки 9, например, насосу, известной конструкции. Внешний источник хладагента 8, средство его прокачки 9 и внешний источник электропитания 6 размещены на судне-буксировщике 10. Газгольдер снабжен люком 11 для приема газа из подводной установки для его сбора (на чертежах не показана). Люк 11 снабжен системой управления (на чертежах не показана), обеспечивающей возможность сообщения полости газгольдера с акваторией 12 в процессе погружения газгольдера и приема газа из подводной установки для его сбора.

Кроме того, донная часть газгольдера снабжена приемным отверстием 13 водовыдачного трубопровода 14. Верхняя часть полости газгольдера снабжена газоотводящим патрубком 15. Корпус газгольдера также снабжен средством стабилизации его положения в надводном или подвсплытом состоянии, например, балластирующими емкостями, известной конструкции, расположенными на донной части корпуса (на чертежах не показаны). Средства вертикального и горизонтального перемещения корпуса газгольдера выполнены в виде поворотных подруливающих устройств 16, предпочтительно съемных, предпочтительно электроприводных. Газгольдер выполнен с плавучестью близкой к нулевой, а его корпус снабжен средством 17 скрепления с судном-буксировщиком 10. На чертеже также показаны средства 18 отображения в реальном масштабе времени пространства на участке под газгольдером, выдачной трубопровод 19, аккумулирующей емкости газосборного узла и его запорная арматура 20. Заявленная опреснительная установка работает следующим образом. Предварительно выявляют газовые фонтаны на дне моря, которые, зачастую приурочены к газогидратным полям, залегающим под покрывающей толщей дна. Донные газовые фонтаны выявляют известным образом (на основе сейсмоакустического профилирования и/или эхозондирования и/или съемки локатором бокового обзора и/или газогеохимическими исследованиями) на глубинах, где термобарические условия соответствуют условиям превращение газа в газогидрат. Газ собирают известным образом, с использованием куполообразных газосборников, размещаемых на дне моря (на чертежах не показаны). При незначительных дебитах газовых фонтанов, целесообразно использовать аккумулирующую емкость (на чертежах не показана), которую связывают с несколькими куполообразными газосборниками. Уловленный газ всплывает в верхнюю часть полости куполообразных газосборников и далее всплывает по трубопроводам, соединяющим их с полостью аккумулирующей емкости, собираясь в ее верхней части. Остановившись в своем движении, пузырьки

газа начинают воспринимать давление воды (которое на этой глубине превышает давление, при котором происходит диссоциация гидрата природного газа, и с учетом температуры воды соответствует термобарическим условиям гидратообразования) вследствие чего газ переходит в гидратную форму. Таким образом, в полости аккумулирующей емкости начинает накапливаться газогидрат природного газа, который представляет собой твердое соединение, в котором молекулы газа заполняют ячейки кристаллической решетки, образованной молекулами воды (без формирования химической связи между молекулами газа и воды). При заданном наполнении аккумулирующей емкости, ее контрольно-измерительная аппаратура, дает на обслуживающее судно-буксировщик 10 сигнал о готовности к приему газгольдера. Газгольдер буксируют к месту установки. Далее на корпусе 1 закрепляют поворотные подруливающие устройства 16, убирают заглушки с каналов 7 для прокачки хладагента и открывают люк 11, обеспечивая поступление воды в полость газгольдера. Затем, включив систему дистанционного управления, снабженную средствами 18 отображения в реальном масштабе времени пространства на участке под газгольдером и поворотные подруливающие устройства 16 погружают газгольдер на заданную глубину. Далее, используя часть подруливающих устройств 16 для горизонтального перемещения, выводят газгольдер на выдачной трубопровод 19 аккумулирующей емкости газосборного узла и опускают на него люком 11. После этого прогревают выдачной трубопровод 19 аккумулирующей емкости, открыв его запорную арматуру 20. Вследствие прогрева газогидраты, находящиеся в полости аккумулирующей емкости превращаются в газ и уходят (всплывают) в полости корпуса газгольдера 1, накапливаясь в ее верхней части. Остановившись в своем движении, пузырьки газа начинают воспринимать давление воды (которое на этой глубине превышает давление, при котором происходит диссоциация гидрата природного газа, и с учетом температуры воды соответствует термобарическим условиям гидратообразования)

вследствие чего газ переходит в гидратную форму. Таким образом, в полости газгольдера начинает накапливаться газогидрат природного газа. В процессе гидратообразования морская вода отдает в газогидрат пресную воду. Объем морской воды, в процессе роста объема газогидрата вытесняется через люк 11 в пространство акватории. Процесс продолжают до полного освобождения аккумулирующей емкости от газогидрата, либо до заполнения газгольдера. При наполнении газгольдера его контрольно-измерительная аппаратура (на чертежах не показана), дает команду на всплытие. При отрыве газгольдера от выдачного трубопровода 19, его выпускное отверстие перекрывается запорной арматурой 20, кроме того, люк 11 газгольдера также герметизируется.

После всплытия газгольдера, его корпус изолируют, размещением на его поверхности теплоизолирующего покрытия 2, продувают каналы 7 для прокачки хладагента и подключают их к внешнему источнику хладагента 8 и начинают прокачку последнего средствами его прокачки 9, например насосом. Герметичные электрические разъемы 5 средств электроохлаждения подключают к внешнему источнику электропитания 6 и включают их на охлаждение. Тем самым, за счет отвода тепла из полости газгольдера, обеспечивают поддержание термобарических условий в его полости на уровне, исключающем диссоциацию гидрата природного газа. Дальнейшую транспортировку газогидратной массы к потребителям осуществляют известным образом - буксируя газгольдер обслуживающим судном-буксировщиком 10.

При выгрузке газа потребителю, обеспечивают подогрев объема газогидрата, например, переключая термоэлектрические охлаждающие элементы 4 в режим нагрева и/или прокачивая по каналам подвода хладагента нагретый теплоноситель (например, забортной воды, если, это происходит летом). Вследствие прогрева, газогидраты превращаются в газ, который под собственным давлением уходит из полости газгольдера через газоотводящий патрубок 15 (его принимают в береговые газгольдеры - на

чертежах не показаны). Процесс продолжают до полного освобождения газгольдера от газа, при этом оставшуюся в газгольдере пресную воду сливают через отверстие 13 водовыдачного трубопровода 14 для дальнейшего использования. По завершению процесса разгрузки отключают герметичные электрические разъемы 5 средств электроподогрева от судового источника тока, перекрывают запорную арматуру газгольдера и транспортируют его к месту сбора газа. Далее все повторяется.

1. Устройство для опреснения морской воды, содержащее плавучий корпус, снабженный средством приема воды, средством опреснения и средством хранения опресняемой воды, отличающееся тем, что плавучий корпус выполнен в виде газгольдера с плавучестью, близкой к нулевой, снабжен средствами его позиционирования на глубинах, где термобарические условия соответствуют условиям гидратообразования природного газа, при этом корпус выполнен с возможностью поддержания в его полости термобарических условий на уровне, исключающем диссоциацию гидрата природного газа, для чего снабжен средствами теплоизолирования, выполненными в виде теплоизолирующего покрытия корпуса, предпочтительно съемного, и/или охлаждения полости и выполнен с расчетом на внутреннее давление, не меньшее давления, соответствующего давлению диссоциации гидрата природного газа при температурном режиме, поддерживаемом в полости газгольдера, кроме того, средство для приема воды содержит герметизируемый люк, выполненный с возможностью подводного приема природного газа и с возможностью сообщения полости газгольдера с акваторией, кроме того, верхняя часть полости газгольдера снабжена газоотводящим патрубком, а его донная часть снабжена приемным отверстием водоотводящего трубопровода, при этом газгольдер выполнен с возможностью его буксировки судном-буксировщиком, на котором размещены внешний источник хладагента, снабженный средством его прокачки и внешний источник электропитания.

2. Устройство по п.1, отличающееся тем, что средство охлаждения полости корпуса содержит термоэлектрические охлаждающие элементы, линия питания которых выведена за пределы корпуса и снабжена герметичными разъемами, выполненными с возможностью подключения к внешним источникам электропитания.

3. Устройство по пп.1 и 2, отличающееся тем, что средство охлаждения полости корпуса содержит каналы для прокачки хладагента, выполненные с возможностью подключения к внешнему источнику хладагента, снабженному средством его прокачки.

4. Устройство по п.1, отличающееся тем, что средство позиционирования газгольдера содержит средства его вертикального и горизонтального перемещения в толще воды, например, выполненные в виде подруливающих устройств, предпочтительно съемных, предпочтительно электроприводных.



 

Наверх