Инструмент деформации с многослойным покрытием

 

Полезная модель относится к электрофизическим и электрохимическим методам обработки и может быть использована для повышения износостойкости, восстановления размеров, упрочнения и повышения коррозионной стойкости инструмента деформации.

Технической задачей полезной модели является повышение работоспособности и стойкости инструмента деформации.

Техническая задача достигается тем, что на поверхность инструмента деформации нанесено упрочняющее покрытие в виде двух электроэрозионных слоев, имеющих разную твердость, причем твердость нижнего электроэрозионного слоя составляет 48-60 HRC, a твердость верхнего слоя составляет 61-70 HRC, кроме того формирование первого слоя проводят до достижения толщины в пределах 0,35-0,70 общей толщины электроэрозионного покрытия.

Полезная модель относится к электрофизическим и электрохимическим методам обработки и может быть использована для повышения износостойкости, восстановления размеров, упрочнения и повышения коррозионной стойкости инструмента деформации.

Известен способ упрочнения инструмента из быстрорежущей стали, включающий насыщение из обмазки, содержащей, %:

ферротитан 50-60, карбид бора 20-30, краснокровяная соль 15-25, хлористый аммоний 2-3, и последующий трехкратный отпуск совместно с сульфидированием в герметическом муфеле в среде сульфата натрия при 550-570°С в течении 1 ч.

Перед насыщением из обмазки инструмент шлифуют, затачивают и подвергают цементации при 980-1020°С с выдержкой в течение 1,5 ч. и охлаждением вместе с муфелем, состав обмазки разводят в этилсиликате до получения сметанообразной пасты, а в качестве ферротитана используют FeTi - 75 (П-2172360, 7 С23С 12/00, С23F 17/00, опубл. 2001.08.20).

Недостатком данного способа является его сложность воспроизводства и невысокая прочность сцепления наносимого покрытия с материалом инструмента.

Известны способы упрочнения инструментов, заключающиеся в том, что на предварительно подготовленную поверхность наносится износостойкое покрытие из нитрида титана, при этом образуется переходная зона между поверхностью инструмента и покрытием, величина которой влияет на сцепление покрытия с материалом инструмента (П-2062817, С23С 14/00, 14/26, опубл. 1996.06.27.). Недостатком данного способа является то, что такой способ требует нагрева упрочняемого инструмента, а с ростом температуры увеличивается толщина переходной зоны, что приводит к снижению прочности покрытия.

Известен инструмент с многослойным покрытием, содержащий инструментальную основу из твердого сплава и нанесение на нее трехслойного износостойкого ионно-плазменного покрытия, состоящего из верхнего слоя покрытия нитрида титана и нижнего слоя карбонитрида титана (пол. модель №23076, 7 С23С 14/ 32, опубл. 2002.05.20).

Наиболее близким к предлагаемому является инструмент с многослойным покрытием, содержащий инструментальную основу из твердого сплава и нанесенное на нее трехслойное износостойкое ионно-плазменное покрытие, состоящее из внешнего слоя покрытия нитрида титана TiN, нижнего слоя карбонитрида титана TiCN и дополнительно содержащий промежуточный слой, подвергнутый ионной бомбандировке.

В качестве материала промежуточного слоя выбран нитрид титана-алюминия TiAlN или нитрид титана-циркония NiZrN (пол. модели №№37721,37722, 7 С23С 14/32, опубл. 2004.05.10).

Основными недостатками таких покрытий является то, что упрочняющие покрытия, обладающие хорошей адгезией к инструментальному материалу, имеют относительно низкую твердость и уровень сжимающих напряжений, либо имеют высокую микротвердость, но недостаточную прочность сцепления с инструментальной основой. В результате этого покрытие легко подвергается абразивному износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость инструмента деформации.

Наибольший интерес при этом представляют методы, с помощью которых достигается значительное упрочнение поверхностных слоев инструмента. Основным достоинством поверхностной обработки инструмента является сочетание высокой твердости и прочности поверхностного слоя с вязкостью и высокой пластичностью основы изделия.

Значительный эффект поверхностного упрочнения достигается за счет повышения не только твердости, но и износо- и коррозионной стойкости рабочей поверхности инструмента деформации.

Для реализации указанных достоинств в промышленных условиях представляют интересы методы упрочнения концентрированными потоками энергии, в том числе с использованием электрических разрядов.

Наиболее простым при этом является способ электроэрозионного легирования.

Электроэрозионное легирование особенно эффективно для повышения износостойкости инструмента деформации в условиях острейшего дефицита инструментальных сталей.

Техническим результатом полезной модели является повышение работоспособности и стойкости инструмента деформации.

Технический результат при осуществлении полезной модели достигается тем, что на поверхность инструмента деформации специальными электродами нанесено покрытие в виде двух легирующих электроэрозионных слоев, имеющих разную твердость, причем твердость нижнего легирующего слоя составляет 48-60 HRC, а твердость верхнего слоя составляет 61-70 HRC, кроме того формирование первого слоя проводят до достижения толщины в пределах 0,35-0,70 общей толщины электроэрозионного покрытия.

Полезная модель поясняется чертежом - фиг.1, на котором показан инструмент деформации с электроэрозионным покрытием.

Инструмент деформации состоит из основного материала 1, выполненного из инструментальной стали и нанесенного электроэрозионного покрытия в виде двух слоев 2 и 3, которые имеют разную твердость.

Для осуществления предлагаемого технического решения обрабатываемый инструмент деформации подвергают электроэрозионной обработке известными способами. В зависимости от исходных физико-химических свойств обрабатываемой поверхности устанавливают режимы обработки и вид легирующего материала - электрода. В процессе электроэрозионного упрочнения материал электрода переносится на обрабатываемую поверхность инструмента, образуя слой высокопрочного покрытия из легирующего материала.

Преимущество заявляемого технического решения заключается в том, что качественный и количественный состав теплопроводного материала, используемого в качестве первого слоя, обеспечивает образование неограниченного твердого раствора с материалом инструмента, а состав второго слоя образует неограниченный твердый раствор с материалом первого слоя, что в первом и во втором случае обеспечивает хорошую сцепляемость.

Первый слой покрытия, имеющий высокую жаростойкость до 1000°С и теплопроводность, соответствующую материалу детали инструмента, обеспечивает изменение внутреннего напряжения растяжения и напряжения сжатия, а также равномерность распределения толщины слоя покрытия.

Материал второго слоя обеспечивает повышенную износостойкость, локализацию пор покрытия (улучшает сплошность покрытия) и способствует быстрому периоду приработки.

В момент соприкосновения электрода с деталью инструмента возникают большие токи короткого замыкания и электрод начинает греться, и, если не производить охлаждение, то электрод может раскалиться и будет происходить налипание капелек материала электрода на инструмент.

Кроме того происходит окисление нагретого электрода за счет взаимодействия с кислородом воздуха, что приводит к быстрому износу электрода.

Для устранения этого недостатка предлагается производить охлаждение электрода охладителем. В качестве охладителя используют сжатый воздух или нейтральный газ, который подают к электроду через специальное сопло.

Исследования режимов электроэрозионного легирования инструмента деформации из инструментальных марок сталей с применением тугоплавких электродов типа ВК6, ВК8, ВК15, Т15К6, Cr, Ni, сормайт и др., показали, что наилучший эффект упрочнения инструмента был достигнут при нанесении первого (нижнего) слоя покрытия из электрода, состоящего из сплава сормайт и второго (верхнего) слоя из материала-электрода ВК8.

Пример

Электроискровое покрытие режущего инструмента проводили при следующих параметрах:

- технологический ток, А- 90
- напряжение холостого хода, В- 110
- емкость конденсаторов, мкФ.- 950
- охлаждение электрода- сжатый воздух
- твердость материала инструмента, HRC- 46
- твердость материала 1-го слоя, HRC- 57
- твердость материала 2-го слоя, HRC - 65
- толщина 1-го слоя покрытия, мм- 0,35
- толщина 2-го слоя покрытия, мм- 0,2

Было установлено, что общий уровень износостойкости инструмента деформации, упрочненного указанными сплавами, оказался значительно выше, чем у неупрочненных термозакаленных контрольных образцов.

Эффективность упрочненного инструмента деформации определяли по величине коэффициента повышения стойкости, определяемого как отношение стойкости инструмента с покрытием к стойкости инструмента с покрытием по методу способа- прототипа и к стойкости инструмента без упрочнения.

При нанесении электроэрозионного покрытия в зону контакта электрода с инструментом через специальное сопло подавали сжатый газ. Используя микроскоп типа МПБ- 2 с 24-х кратным увеличением установили, что вся поверхность имела равномерное электроэрозионное покрытие, между отдельными участками разрывов не наблюдалось.

Данные по износостойкости приведены в таблице №1.

Таблица №1
Способ упрочненияЛегирующий материалВремя работы инструмента, кол-во опрессовокКоэффициент износостойкости
2-х слойное электроэрозио иноеВК8 - верхний слой, сормайт - нижний слой60 1,58
ионно-плазменное покрытие (по прототипу)TiN TiA1N, NiZrN TiCN 481,26
однослойное электроэрозио иное порытиеВК8 531,40
контольные без упрочнения-381,00

Как видно из приведенных в таблице №1 данных, коэффициент износостойкости инструмента деформации, обработанного по предлагаемому техническому решению выше в 1,40-1,58 раза в сравнении с обычным термозакаленным инструментом без упрочнения и в 1,25 раза выше, чем обработанные по способу - прототипу.

Предлагаемое техническое решение позволяет существенно повысить стойкость инструмента деформации, а также сократить расход дорогостоящих инструментальных материалов, что существенно повышает эффективность применения инструмента.

Таблица №2
Упрочнение с нанесением электроэрозионных слоевСтойкость инструмент а, кол-во опрессовок, шт.
твердость 1-го слоя, HRCтвердость 2-го слоя, HRCтолщина 1-го слоя, отношение толщины слоя к общей толщине электроэр. слоевтолщина 2-го слоя, отношение толщины слоя к общей толщине электроэрози онных слоев
1.48610,35 0,6553
2.5565 0,400,6046
3.58 670,500,50 49
4.60690,36 0,6458
5.5865 0,400,6062
6.55 700,350,65 60
7.50650,37 0,6339
8.4666 0,340,6641
9.47 710,360,64 45

10.46 590,600,60 48
11.52650,65 0,3561
12.5567 0,700,3059
13.49 610,720,28 49
14.50610,50 0,5051

Согласно таблицы №2 наилучшие показатели по стойкости инструмента были достигнуты при твердости первого электроэрозионного слоя 48-60 HRC, а твердость второго слоя составляла 61-70 HRC, кроме того толщина первого электроэрозионного слоя находилась в пределах 0,35-0,70 общей толщины электроэрозионного покрытия.

Данные показатели были достигнуты опытно- практическими проработками предлагаемого технического решения.

Таким образом заявляемое техническое решение полностью выполняет поставленную задачу.

Достоинством данного технического решения является:

- высокая прочность сцепления нанесенного материала электрода с инструментальной основой за счет взаимного диффузионного механического перемешивания;

- возможность локального нанесения покрытия без специальной защиты остальной поверхности;

- отсутствие изменений физико- механических свойств деталей.

Инструмент деформации с многослойным покрытием, содержащий инструментальную основу из твердого сплава и нанесенное на него упрочняющее покрытие, отличающийся тем, что упрочняющее покрытие выполнено в виде двух электроэрозионных слоев, имеющих разную твердость, причем твердость нижнего электроэрозионного слоя составляет 48-60 HRC, а твердость верхнего слоя составляет 61-70 HRC, кроме того, формирование первого слоя проводят до достижения толщины в пределах 0,35-0,70 общей толщины электроэрозионного покрытия.



 

Наверх