Вибрационный гироскоп

 

Предлагаемая полезная модель относится к измерительной технике, в частности, к вибрационным гироскопическим приборам, предназначенным для измерения угловой скорости. Сущность вибрационного гироскопа, содержащего корпус, связанные друг с другом двумя упругими торсионами инерционное тело в виде плоской рамки и ступицу, которая соединена с корпусом посредством упругой оси, а также две параллельные плоскости этой рамки с двух ее сторон изоляционные пластины с электродами и катушкой, расположенной в поле магнитной системы для возбуждения колебаний рамки, сервисную электронику, связанную с электродами и катушкой, заключается в том, что на двух противоположных сторонах рамки, симметрично относительно общей геометрической оси упругих торсионов, выполнены четыре площадки, параллельные плоскости рамки, а на каждой из площадок жестко закреплена пластина в виде гребенки. Предлагаемое конструктивное исполнение вибрационного гироскопа для измерения угловой скорости в соответствии с настоящей полезной моделью позволяет повысить его точность за счет снижения уровня квадратурной составляющей выходного сигнала.

Предлагаемая полезная модель относится к измерительной технике, в частности, к вибрационным гироскопическим приборам, предназначенным для измерения угловой скорости.

Известен гироскоп-акселерометр, который состоит из одной кремневой и двух стеклянных пластин. В кремневой пластине путем травления сформированы базовая рамка и два маятниковых узла, которые связаны с рамкой с помощью упругих перемычек. Маятники могут упруго перемещаться вдоль оси, нормальной плоскости пластины (патент США №5392650, класс 73/517 А, 1995 г.).

Система возбуждения может вызывать колебания маятниковых узлов в противофазе в плоскости пластины, что, по сути, эквивалентно вращению всей пластины вокруг оси, перпендикулярной ее плоскости. При наличии вращения основания, на котором установлен акселерометр-гироскоп, его маятники под действием сил Кориолиса начнут совершать колебания с частотой возбуждения. Амплитуды колебаний маятников зависят от угловой скорости поворота прибора.

На базоваю рамку кремниевой пластины с двух сторон жестко установлены две стеклянные пластины с элекродами, которые совместно с кремниевой пластиной, как общим электродом, образуют пару дифференциальных емкостных датчиков смещения маятников.

Основными недостатками рассмотренного акселерометра-гироскопа являются, во-первых, невозможность изготовления кремниевой пластины с идентичными мятниковыми узлами, что приводит к дополнительной погрешности прибора, и, во-вторых, в данной конструкции достаточно сложно осуществить режим резонансной настройки колебаний маятников и маятниковых

узлов.

Известен вибрационный гироскоп, который имеет корпус с установленным в нем узлом вибрирующего кольца, называемым также роторным узлом.

Роторный узел выполнен из единой пластины монокристалла кремния и состоит из ротора в виде внешнего кольца и внутренней ступицы, которые связаны друг с другом упругими элементами. Ступица соединена с корпусом также упругими связями. При этом ротор может совершать угловые колебания вокруг двух взаимно ортогональных осей (вокруг оси, нормальной плоскости кольца, и оси, расположенной в плоскости кольца).

В гироскопе электростатически могут быть возбуждены угловые колебания ротора вокруг оси, нормальной его плоскости (оси возбуждения). При наличии вращения корпуса гироскопа под действием сил Кориолиса его ротор начинает совершать колебания вокруг второй оси (выходной оси) с амплитудой, которая пропорциональна угловой скорости поворота.

На корпусе гироскопа образована диэлектрическая подложка (изоляционный слой), на которой имеется два электрода. Электроды совместно с кремниевым ротором (как общим электродом) образуют дифференциальный емкостный датчик смещения ротора (патент США №5555765, класс 73/504.09, 1996)..

К недостаткам данного гироскопа следует отнести следующее:

1. Ротор гироскопа связан с корпусом упругим кардановым подвесом, который позволяет совершать ротору угловые колебания вокруг двух взаимно ортогональных осей. Реализация совершенного упругого подвеса такого типа достаточна сложна.

2. Электроды дифференциального датчика смещения ротора и электроды электростатического возбуждения ротора имеют друг с другом емкостную связь, что приводит к влиянию системы возбуждения на систему измерения и, соответственно, к ошибкам гироскопа.

3. В данной конструкции гироскопа трудно осуществить возбуждение ротора с достаточно большой амплитудой, что ограничивает достижения высокой чувствительности прибора.

Известен вибрационный гироскоп, который имеет ротор в виде плоской рамки и ступицы, связанных друг с другом двумя упругими торсионами. Рамка, ступица и упругие торсионы образованы из единой кремниевой пластины методами химического травления. На ступице жестко закреплены с двух сторон изоляционные пластины, на которые нанесены металлизацией электроды, образующие совместно с кремниевой рамкой (как общим электродом) емкостные датчики смещения и электростатические датчики силы. Так как рамка относительно изоляционных пластин расположена с зазором, она может совершать угловые колебания вокруг одной оси, расположенной в плоскости рамки (оси упругих торсионов). Колебания вокруг второй ортогональной оси рамка совершает на упругой оси, перпендикулярной плоскости пластин. Для возбуждения этих колебаний используется магнитоэлектрический способ, для чего на изоляционных пластинах напылена катушка, витки которой размещены в поле постоянных магнитов. (Патент Российской Федерации №2219495, G01С 19/56, G01P 9/04, 2002). Указанный гироскоп является прототипом предлагаемого изобретения.

Для идеальной конструкции вибрационного гироскопа возбуждение колебаний рамки вокруг оси возбуждения, перпендикулярной ее плоскости, не приводит к колебаниям вокруг второй (выходной) оси при отсутствии вращения прибора. Вращение прибора из-за действия момента сил Кориолиса вызывает колебания рамки вокруг выходной оси, амплитуда которых пропорциональна угловой скорости вращения прибора. В силу несовершенства технологических процессов изготовления реальная конструкция гироскопа отлична от идеальной, что приводит к ряду погрешностей. В частности, из-за неперпендикулярности осей поворота рамки, вокруг выходной оси возникают колебания даже при

отсутствии вращения прибора (корпуса гироскопа). Эти колебания приводят к появлению в выходном сигнале вибрационного гироскопа квадратурной составляющей. Название «квадратурная» обусловлено тем, что фаза этой составляющей отличается от фазы полезного сигнала на . Наличие квадратурной составляющей является одним из основных барьеров достижения высокой точности вибрационных гироскопов.

Техническим результатом настоящей полезной модели является повышение точности вибрационного гироскопа за счет снижения величины квадратурной составляющей его выходного сигнала.

Указанный технический результат в вибрационном гироскопе, содержащем корпус, связанные друг с другом двумя упругими торсионами инерционное тело в виде плоской рамки и ступицу, которая соединена с корпусом посредством упругой оси, а также две параллельные плоскости этой рамки с двух ее сторон изоляционные пластины с электродами, расположенными в поле магнитной системы для возбуждения колебаний рамки, сервисную электронику, связанную с электродами и магнитной системой, достигается тем, что на двух противоположных сторонах рамки, симметрично относительно общей геометрической оси упругих торсионов, выполнены четыре площадки, параллельные плоскости рамки, а на каждой из площадок жестко закреплена пластина в виде гребенки.

Предлагаемая полезная модель поясняется чертежами.

На фиг.1 показан роторный узел вибрационного гироскопа;

на фиг.2 показан пример компоновки конструктивных элементов гироскопа.

Роторный узел вибрационного гироскопа состоит из рамки 1 (инерционного тела или ротора) и ступицы 2, связанных друг с другом двумя упругими торсионами 3. Рамка 1, ступица 2 и упругие торсионы 3 выполнены из единой пластины монокристалла кремния травлением. Упругие оси 4 одними концами жестко связаны со ступицей 2, а другими через переходные элементы 9, 10 с корпусом 8. Со ступицей жестко соединены две изоляционные пластины 5, на каждой из которых со стороны рамки 1 напротив ее плеч с прорезями металлизацией образованы два электрода (не показаны). Эти два электрода совместно с рамкой 1, как с общим электродом, образуют одновременно и дифференциальный емкостной датчик угла поворота рамки 1 вокруг оси X, и электростатический датчик момента сил. На внешней стороне каждой пластины по ее периметру металлизацией выполнена плоская катушка (не показана), которая размещается в поле постоянных магнитов 7. Количество витков катушки выбирается из конструктивных и технологических возможностей и обычно их достаточно не более десяти. Катушки обеих пластин включены последовательно, для чего их концы соединены внешним проводником и связаны с сервисной электроникой (не показана).

Рамка 1 может совершать угловые колебания вокруг двух взаимно ортогональных осей: оси возбуждения Z, которая определяется осью 4 и перпендикулярна плоскости рамки и выходной оси X, которая совпадает с осью торсионов 3 и расположена в плоскости рамки. На рамке рядом с торсионами 3 симметрично с двух ее сторон образованы четыре площадки, на которых жестко закреплены пластины 6 в виде гребенки.

При возбуждении угловых колебаний рамки 1 вокруг оси Z (возбуждения) при отсутствии вращения корпуса гироскопа вокруг выходной Х возникают колебания, обусловленные неперпендикулярностью осей Х и Z, а также непараллельностью одной из главных осей инерции рамки выходной оси в плоскости XZ. Выходной сигнал гироскопа, пропорциональный этим колебаниям, - это квадратурный сигнал, который необходимо сделать как можно меньше. Снижение квадратурного сигнала за счет уменьшения неперпендикулярности

осей гироскопа ограничено технологическими возможностями и может быть доведено только до определенного уровня (достаточно высокого). В то же время, можно осуществить разворот главных осей инерции рамки. Для этого на рамке 1 гироскопа на специально образованных площадках жестко закреплены четыре пластины 6 в виде гребенки (с предварительно рассчитанной величиной массы). Балансировка рамки 1 осуществляется, например, удалением зубцов гребенок на двух пластинах, расположенных кососимметрично относительно центра масс рамки. При этом контролируют изменение квадратурного сигнала гироскопа, обусловленное балансировкой, которое должно компенсировать его исходную величину. После балансировки рамки контрольного гироскопа подсчитывают количество и положение оставшихся зубцов на его гребенках, после чего производят удаление зубцов гребенок партии или серии вибрационных гироскопов в количестве и положениях идентичных контрольному гироскопу.

Предлагаемое конструктивное исполнение вибрационного гироскопа для измерения угловой скорости в соответствии с настоящей полезной моделью позволяет повысить его точность за счет снижения уровня квадратурной составляющей выходного сигнала.

Вибрационный гироскоп, содержащий корпус, связанные друг с другом двумя упругими торсионами инерционное тело в виде плоской рамки и ступицу, которая соединена с корпусом посредством упругой оси, а также две параллельные плоскости этой рамки с двух ее сторон изоляционные пластины с электродами и катушкой, расположенной в поле магнитной системы для возбуждения колебаний рамки, сервисную электронику, связанную с электродами и катушкой, отличающийся тем, что на двух противоположных сторонах рамки, симметрично относительно общей геометрической оси упругих торсионов, выполнены четыре площадки, параллельные плоскости рамки, а на каждой из площадок жестко закреплена пластина в виде гребенки.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к области приборостроения, и может найти применение в инерциальных системах подвижных объектов, в автопилотах авиа- и судомоделей и в системах безопасности транспортных средств

Микромеханический гироскоп для беспроводного манипулятора rc11 относится к измерительной технике, в частности, к области приборостроения, и может найти применение в инерциальных системах подвижых объектов, в автопилотах авиа- и судомоделей.

Изобретение относится к области наглядных учебных пособий, в частности, демонстрационных моделей по физике, механике, астрономии, гироскопии, мехатронике и т.д

Изобретение относится к измерительной технике, в частности, к области приборостроения, и может найти применение в инерциальных системах подвижных объектов

Изобретение относится к измерительной технике, в частности, к области приборостроения, и может найти применение в системах навигации, ориентации и управления движением различных объектов

Изобретение относится к морскому навигационному приборостроению и может быть использовано в системах управления подводными аппаратами
Наверх