Головка для аналитического газового плазматрона

 

Полезная модель относится к приборостроению, а именно к аналитическим приборам для проведения спектрального анализа и может использоваться в устройствах атомизации и возбуждения атомов анализируемых проб.

Заявлена головка для аналитического газового плазматрона, содержащая корпус с соплом и размещенный соосно с соплом силовой электрод, систему охлаждения сопла и силового электрода, а также устройство для подачи плазмообразующего газа в межэлектродную камеру, образованную силовым электродом и корпусом с соплом.

Новым является то, что сопло и силовой электрод выполнены в виде аксиально-симметричных эквидистантных тонкостенных оболочек из материала с высокой электро- и теплопроводностью, стенки которых является частью проточных каналов системы охлаждения.

Полезная модель включает 3 зависимых пункта формулы, 4 рисунка.

Полезная модель относится к приборостроению, а именно к аналитическим приборам для проведения спектрального анализа и может использоваться в устройствах атомизации и возбуждения атомов анализируемых проб (далее по тексту устройства атомизации).

Устройство атомизации испаряет анализируемую пробу, обеспечивает атомизацию ее молекул, а также осуществляет возбуждение атомов пробы. Для этого, оно разогревает пробу до температуры несколько тысяч градусов. Анализ пробы сводится к количественному определению содержания элементов таблицы Менделеева путем, например, измерения интенсивности аналитических спектральных линий элементов пробы в атомно-эмиссионном спектре с использованием ранее полученных градуировочных зависимостей. Устройство атомизации должно при этом отвечать ряду жестких требований:

- гарантировать отсутствие в составе плазмы атомов материала силовых электродов;

- обеспечивать стабильность параметров плазмы, что сказывается на воспроизводимости результатов анализов проб, проводимых в разное время;

- иметь высокую надежность, простоту конструкции и высокую технологичность при изготовлении.

Известна конструкция плазматрона для нагрева материалов электрической дугой, образующейся между двумя электродами (см. А.С. СССР №503601, МКИ В 05 В 7/00, 1976 г.), содержащий катод, сопло-анод и расположенную между ними межэлектродную камеру, а также коммуникации для подвода плазмообразующего газа. Анализируемая проба подается в межэлектродную камеру и затем вместе с потоком плазмы истекает через сопло-анод.

Основным недостатком известного устройства является попадание элементов пробы на катод и сопло-анод, что приводит к влиянию на результаты текущего анализа состава ранее анализируемых проб, т.е. наблюдается эффект «памяти».

Наиболее близким к заявляемому устройству (прототипом) является конструкция двухструйного дугового плазматрона, содержащего разделенные в пространстве анодный и катодный узлы, каждый из которых содержит корпус с соплом,

образованным несколькими электрически изолированными диафрагмами с соосными отверстиями, силовой электрод с тугоплавкой вставкой, размещенной на оси сопла, а также устройство для подачи плазмообразующего газа в межэлектродную камеру, образованную силовым электродом и корпусом с соплом (см. Ж.Ж.Жеенбаев и В.С.Энгельшт «Двухструйный плазматрон», стр.12-15, издательство «Илим», г.Фрунзе, 1983 г.). Анодный и катодный узлы располагаются так, чтобы между плазменными струями был угол около 60°. Зона слияния анодной и катодной плазменных струй обладает максимальной температурой, что позволяет эффективно использовать ее для атомизации и возбуждения пробы.

Двухструйный плазматрон по сравнению с одноструйным плазматроном имеет существенное преимущество. Зона ввода пробы находится на пересечении плазменных струй, т.е. вне анодного и катодного узлов, поэтому элементы анализируемой пробы не попадают на электроды анодного и катодного узлов и не оказывают влияния на результаты последующих анализов, а наличие на силовом электроде тугоплавкой вставки позволяет минимизировать наличия в пробе материала силовых электродов.

Основным недостатком известного двухструйного плазматрона является конструкция плазмообразующей головки, используемой в качестве анодного и катодного узлов. Во-первых, это связано с наличием тугоплавкой вставки, размещенной на оси сопла. Известно, что тугоплавкая вставка, имеет низкую электро- и теплопроводность и может быть подвержена эрозии.

Во-вторых, конструкция корпуса с соплом, образована несколькими электрически изолированными диафрагмами с соосными отверстиями. Для обеспечения герметичности головки в качестве электрических изоляторов используют резиновые прокладки, которые при постоянном нагреве подвержены быстрому старению, что может приводить к преждевременному неожиданному выходу головки из строя.

В-третьих, изготовление диафрагм и резиновых прокладок требует высокой точности и предъявляет особые требования к качеству используемых материалов. Даже незначительные технологические нарушения при сборке набора диафрагм могут приводить к их локальному перегреву и к загрязнению плазмы материалом диафрагм.

Задачей заявленного технического решения является разработка простой и надежной конструкции головки, пригодной для использования в аналитическом газовом плазматроне и свободной от указанных недостатков.

Эта задача в головке для аналитического газового плазматрона, содержащей корпус с соплом, размещенный соосно с соплом силовой электрод, систему охлаждения сопла и силового электрода, а также устройство для подачи плазмообразующего газа в межэлектродную камеру, образованную силовым электродом и корпусом с соплом, решена тем, что сопло и силовой электрод выполнены в виде аксиально-симметричных эквидистантных тонкостенных оболочек из материала с высокой электро- и теплопроводностью, стенки которых является частью проточных каналов системы охлаждения.

Выполнение сопла и силового электрода в виде тонкостенных оболочек из материала с высокой электро- и теплопроводимостью, например, из меди, позволяет отказаться от тугоплавкой вставки и эффективно отводить тепло непосредственно из зон разогрева головки за счет более эффективного контакта материала оболочки с охлаждающей жидкостью, что исключает разогрев сопла и силового электрода до температуры, при которой возможно их испарение и попадание в пробу. При этом выполнение силового электрода и сопла в форме аксиально-симметричных эквидистантных оболочек, выполненных, например, виде фрагментов шара или эллипсоида вращения позволяет исключить места локального пробоя, а следовательно, неконтролируемого локального разогрева.

Для эффективного охлаждения силового электрода внутри тонкостенной оболочки силового электрода вблизи сопла установлено отверстие канала системы охлаждения.

Для эффективного охлаждения сопла внутри тонкостенной оболочки сопла вблизи его продольной оси установлено отверстие канала системы охлаждения.

На фиг.1 представлен общий вид заявляемой головки плазматрона.

На фиг.2 и 3 представлены варианты выполнения заявляемой головки плазматрона.

На фиг.4 представлена схема образования плазменных потоков при работе двухструйного плазматрона.

Представленное на фиг.2 и 3 заявляемое устройство включает: сопло 1, состоящее из тонкостенной оболочки 2 с проточным каналом 3, образованным отверстиями 4 и 5; силовой электрод 6 состоящий из тонкостенной оболочки 7 с проточным каналом 8, образованным отверстиями 9 и 10; устройство для подачи плазмообразующего газа, включающее газовый патрубок 11, соединенный с газовой полостью 12, охватывающей силовой электрод 6, электрически изолированный с помощью изолятора 13 от сопла 1.

Представленная на фиг.4 схема образования плазменных потоков при работе двухструйного плазматрона включает анодную головку 14 и катодную головку 15, между которыми расположена зона слияния 16 плазменных струй головок, в которую вводят анализируемую пробу 17.

Плазматрон работает следующим образом. Между силовым электродом 6 и соплом 1 в анодной 14 и катодной 15 головках возбуждают разряд поджига. С помощью плазмообразующего газа, поступающего в газовую полость 12 через газовый патрубок 11 и выходящего из сопла 1 каждой головки формируют плазменные струи, в зоне слияния 16 которых происходит замыкание тока дуги между силовыми электродами 6 анодной и катодной головок 14 и 15, в результате чего достигается температура, достаточная для испарения, атомизации и возбуждения анализируемой пробы 17. Для исключения попадания в анализируемую пробу материала силовых электродов 6 или сопел 1 головок, обеспечивается их интенсивное охлаждение, для чего во внутрь тонкостенной оболочки 7 силового электрода 6 через проточный канал 8, образованный отверстиями 9 и 10 подается охлаждающая жидкость и отводится нагретая жидкость, возникающая в зоне контакта охлаждающей жидкости с поверхностью силового электрода 6. Аналогичным образом осуществляется охлаждение сопла 1. Для этого через проточный канал 3, образованный отверстиями 4 и 5 подается охлаждающая жидкость и отводится нагретая жидкость из зоны нагрева сопла 1.

Таким образом, заявляемое устройство позволяет эффективно охлаждать силовые электроды и сопла, что обеспечивает не только надежную и продолжительную работу плазматрона, но и сохраняет высокую чистоту плазмы, в которую подается анализируемая проба.

1. Головка для аналитического газового плазматрона, содержащая корпус с соплом и размещенный соосно с соплом силовой электрод, систему охлаждения сопла и силового электрода, а также устройство для подачи плазмообразующего газа в межэлектродную камеру, образованную силовым электродом и корпусом с соплом, отличающаяся тем, что сопло и силовой электрод выполнены в виде аксиально-симметричных эквидистантных тонкостенных оболочек из материала с высокой электро- и теплопроводностью, стенки которых являются частью проточных каналов системы охлаждения.

2. Головка по п.1, отличающаяся тем, что внутри тонкостенной оболочки силового электрода вблизи сопла установлено отверстие канала системы охлаждения.

3. Головка по п.1, отличающаяся тем, что внутри тонкостенной оболочки сопла вблизи его продольной оси установлено отверстие канала системы охлаждения.

4. Головка по п.1, отличающаяся тем, что аксиально-симметричные эквидистантные оболочки выполнены в виде фрагментов шара или эллипсоида вращения.



 

Наверх