Генератор переменного расхода жидкости (варианты)

 

Полезная модель относится к генераторам переменного расхода для определения метрологических характеристик средств измерений артериального давления и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений и позволяет расширить возможности получения расхода жидкости с различными законами изменения за счет выполнения сечения ротора различных форм. Генератор переменного расхода жидкости содержит ротор 1 в виде усеченного цилиндра, соединенный с валом двигателя 7, цилиндрический статор 2 с двумя выходными прорезями 8 по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами 5 и 6. Новым является то, что сечение съемного ротора 1 выполнено в соответствии с заданной характеристикой формы и амплитуды расхода жидкости. Ротор 1 выполнен в виде цилиндра, усеченного двумя плоскими поверхностями, одной перпендикулярно, а другой - под углом к продольной оси ротора 1. Съемный ротор 1 выполнен в виде цилиндра, усеченного двумя линейчатыми поверхностями, одна из которых выпуклая, а другая вогнутая. Сечение съемного ротора 1 представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению где R - радиус ротора 1, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. Сечение съемного ротора 1 представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению где R - радиус ротора 1, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. Сечение съемного ротора 1 представляет

собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению , где R - радиус ротора 1, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. 1 н.п. и 5 з.п. ф-лы ПМ, 2 илл.

Полезная модель относится к генераторам переменного расхода для определения метрологических характеристик средств измерений артериального давления и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений.

Известны генераторы переменного расхода для определения динамических характеристик расходомеров (Генератор переменного расхода. Отчет №Б 060014. Всесоюзный научно-технический информационный центр. М., 1974) - [1].

Известен генератор переменного расхода, который использует изменение площади прямоугольной прорези, расположенной по образующей цилиндрического статора (Пульсатор расхода ПР-1. Техническое описание П1-00-00 ТО, 1973) - [2]. Контролируемая среда подается во внутреннюю полость статора по входному трубопроводу. Изменение размеров площади прорези происходит при вращении ротора в форме цилиндра, усеченного плоскостью под углом к его продольной оси. При этом значение расхода через указанную выше прорезь при равномерном вращении ротора изменяется по синусоидальному закону. Прошедший через прорезь изменяемой площади поток поступает в испытательный участок в виде трубопровода с установленным в нем испытуемым расходомером и далее - в сливную емкость через сливной трубопровод. Частота пульсаций расхода определяется скоростью вращения ротора. Изменяя скорость вращения ротора и регистрируя показания испытуемого расходомера, можно определять частотную характеристику испытуемого расходомера. Этот известный генератор характеризуется трудностью получения пульсаций расхода требуемой амплитуды и формы в широком диапазоне частот, так как для этого необходимо управлять движением большой массы жидкости, а это требует создания значительного давления контролируемой среды, что в ряде

случаев практически не осуществимо. Кроме того, в генераторах такой конструкции имеют место значительные перепады давления, что вносит дополнительные погрешности в результаты испытаний, не говоря уже о наличии больших вибраций трубопровода, особенно на низких частотах.

Известен гидромеханический пульсатор для исследования динамических характеристик расходомеров по авторскому свидетельству SU №1013764 A, G 01 F 25/00, опубликованный 23.04.83 Бюл. №15 - [3], содержащий цилиндрический корпус с входным и двумя выходными окнами прямоугольной формы, расположенными во взаимно перпендикулярных плоскостях, и с установленным в корпусе цилиндрическим ротором, который выполнен полым, с нечетным числом окон, идентичных выходным окнам корпуса, причем суммарный размер окон по окружности равен 180. Недостатком такого пульсатора является воспроизведение только синусоидального пульсирующего потока.

Наиболее близким к заявленной полезной модели является изобретение по авторскому свидетельству СССР №637722, G 01 F 25/00, Генератор переменного расхода, опубл. 15.12.78 Бюл. №46 - [4] для определения динамических характеристик расходомеров, содержащий ротор в форме цилиндра, усеченного плоскостью под углом к его продольной оси, пустотелый цилиндрический статор с прорезью прямоугольной формы по образующей цилиндра на диаметрально противоположных сторонах. Ротор соединен с валом двигателя. Внутренняя полость статора соединена с входным трубопроводом, подающим контролируемую среду и через прорези сообщается с отрезками двух трубопроводов, в одном из которых установлен испытуемый расходомер. Другие концы трубопроводов присоединены к выходному трубопроводу через дроссельное устройство (фиг.2а).

Контролируемая среда по входному трубопроводу поступает в полость статора и через прорези проходит по двум трубопроводам и через расходомер - в выходной трубопровод.

Недостатком такого генератора является невозможность воспроизведения всего многообразия форм генерируемого расхода.

Технический результат, на достижение которого направлено заявляемая полезная модель, заключается в расширение возможностей получения расхода жидкости с различными законами изменения за счет выполнения сечения ротора различных форм.

Технический результат достигается тем, что в генераторе переменного расхода жидкости, содержащем ротор в виде усеченного цилиндра, соединенный с валом двигателя, цилиндрический статор с двумя выходными прорезями по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами, новым является то, что сечение съемного ротора выполнено в соответствии с заданной характеристикой формы и амплитуды расхода жидкости. Съемный ротор выполнен в виде цилиндра, усеченного двумя плоскими плоскостями, одной перпендикулярно, а другой - под углом к продольной оси ротора. Сечение съемного ротора представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению где R - радиус ротора, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. Съемный ротор выполнен в виде цилиндра, усеченного двумя линейчатыми поверхностями, одна из которых выпуклая, а другая вогнутая. Сечение съемного ротора представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению где R - радиус ротора, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. Сечение съемного ротора представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению , где

R - радиус ротора, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей.

Сущность полезной модели поясняется на фиг.1, 2, где:

Фиг.1 - генератор переменного расхода;

Фиг.2б, в, г, д - примеры усеченного ротора.

1 - ротор; 2 - статор; 3 - корпус; 4 - входной трубопровод; 5 - правый трубопровод; 6 - левый трубопровод; 7 - двигатель; 8 - прорези статора; 9 - муфта.

В статоре 2 в виде пустотелого цилиндра с прорезями 8, расположенными по образующей цилиндра на диаметрально противоположных сторонах, расположен ротор 1 в виде усеченного цилиндра. Ротор 1 соединен с валом двигателя 7 муфтой 9. Внутренняя полость статора 2 связана с входным трубопроводом 4, подающим контролируемую среду, и через прорези 8 сообщается с трубопроводами 5 и 6. Статор 2 закреплен с корпусом 3, в котором в подшипниках установлен вал ротора 1. Для замены ротора 1 с другим сечением его отсоединяют от вала двигателя 7 муфтой 9, а затем отсоединяют и статор 2.

Контролируемая жидкость по входному трубопроводу 4 поступает в полость статора 2 и через прорези 8 проходит по трубопроводам 5 и 6. В зависимости от углового положения ротора расход среды через прорези может быть либо одинаковым, либо разным. При этом расход определяется площадью прорези, не перекрытой в данный момент ротором.

Для получения различных характеристик форм переменного потока изменяют сечение ротора 1. На фиг.2 приведены примеры усеченного ротора. Съемный ротор 1 может быть выполнен в виде цилиндра, усеченного двумя плоскими плоскостями, одной перпендикулярно, а другой - под углом к продольной оси ротора 1 (фиг.2б). Кроме этой формы можно получить и другие формы, например, использовать сечение плоскостью под углом в 30° или 60° и др. Сечение съемного ротора 1 представляет собой

линейчатую поверхность, ограниченную направляющей кривой согласно уравнению (фиг.2в), где R - радиус ротора 1, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. Съемный ротор 1 выполнен в виде цилиндра, усеченного двумя линейчатыми поверхностями, одна из которых выпуклая, а другая вогнутая. Сечение съемного ротора 1 представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению (фиг.2г), где R - радиус ротора 1, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей. Сечение съемного ротора 1 представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению (фиг.2д), где R - радиус ротора 1, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей.

Продолжительность периода определяется скоростью вращения ротора 1. Масса жидкости в выходных трубопроводах 5 или 6 мала, и поэтому частотный диапазон генератора расширяется в сторону высоких частот. Вследствие того, что суммарная площадь условного прохода прорезей при работе генератора остается постоянной, перепада давления во входном трубопроводе не возникает, что сводит к минимуму искажения формы и амплитуды колебаний расхода и улучшает эксплуатационные характеристики генератора.

Генератор переменного расхода жидкости работает следующим образом.

При включении двигателя 7 ротор 1 приходит во вращение. Контролируемая среда по входному трубопроводу 4 поступает в полость

статора 2 и через поочередно перекрывающиеся прорези 8 проходит по правому 5, и/или по левому 6 трубопроводам. При этом если площадь одной прорези 8 увеличивается, то площадь другой прорези уменьшается и наоборот. Поэтому расход через прорези 8 изменяется в противофазе по отношению друг к другу.

Выбирая необходимое сечение ротора 1, изменяют форму переменного генерируемого расхода. Для замены ротора 1 отсоединяют сначала муфту 9 от вала двигателя 7, а затем отсоединяют и корпус 3.

Таким образом, предложен генератор переменного расхода жидкости, в котором расширение возможностей получения расхода жидкости с различными законами изменения осуществляется за счет выполнения сечения ротора различных форм, при этом решение генератора несложно в исполнении, просто и надежно в работе.

1. Генератор переменного расхода жидкости, содержащий ротор в виде усеченного цилиндра, соединенный с валом двигателя, цилиндрический статор с двумя выходными прорезями по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами, отличающийся тем, что съемный ротор выполнен в виде цилиндра, усеченного двумя плоскими плоскостями, одной перпендикулярно, а другой - под углом к продольной оси ротора.

2. Генератор переменного расхода жидкости, содержащий ротор в виде усеченного цилиндра, соединенный с валом двигателя, цилиндрический статор с двумя выходными прорезями по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами, отличающийся тем, что съемный ротор выполнен в виде цилиндра, усеченного двумя линейчатыми поверхностями, одна из которых выпуклая, а другая вогнутая.

3. Генератор переменного расхода жидкости, содержащий ротор в виде усеченного цилиндра, соединенный с валом двигателя, цилиндрический статор с двумя выходными прорезями по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами, отличающийся тем, что сечение съемного ротора представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению

где R - радиус ротора, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей.

4. Генератор переменного расхода жидкости, содержащий ротор в виде усеченного цилиндра, соединенный с валом двигателя, цилиндрический статор с двумя выходными прорезями по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами, отличающийся тем, чтосечение съемного ротора представляет собой линейчатую поверхность, ограниченную направляющейкривой согласно уравнению

где R - радиус ротора, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей.

5. Генератор переменного расхода жидкости, содержащий ротор в виде усеченного цилиндра, соединенный с валом двигателя, цилиндрический статор с двумя выходными прорезями по образующей цилиндра на диаметрально противоположных сторонах, связанными с трубопроводами, отличающийся тем, что сечение съемного ротора представляет собой линейчатую поверхность, ограниченную направляющей кривой согласно уравнению

,

где R - радиус ротора, х, y - координаты точек направляющей кривой при нахождении начала координат в точке пересечения оси ротора с линией сопряжения секущих поверхностей.



 

Наверх