Термозапорный клапан

 

Полезная модель относится к трубопроводной арматуре, в частности, к нормально открытым клапанам, закрытие которых происходит автоматически при достижении определенной температуры. Полезная модель, именуемая ниже термозапорный клапан, предназначена для автоматического перекрытия газопровода при превышении установленной температуры. Задачами полезной модели является снижение гидродинамического сопротивления открытого термозапорного клапана по сравнению с конструкциями, в которых запорный элемент располагается в потоке газа, при одновременном повышении надежности и стабильности температуры срабатывания, а также сохранении высокой герметичности перекрытия потока газа при срабатывании, свойственной конструкциям с седлом и золотником. Технический результат достигается тем, что запорный элемент, имеющий форму шара, располагается вне потока газа, вследствие чего снижается гидродинамическое сопротивление открытого термозапорного клапана. Стопорный элемент представляет собой деталь или сборочную единицу, полностью или частично изготовленную из легкоплавкого или термопластичного материала, и также располагается вне потока газа; вследствие отсутствия охлаждения стопорного элемента потоком газа и хорошего теплового контакта между стопорным элементом и стенкой корпуса термозапорного клапана также повышается стабильность температуры срабатывания последнего. 1 ил.

Полезная модель относится к трубопроводной арматуре, в частности, к нормально открытым клапанам, закрытие которых происходит автоматически при достижении определенной температуры. Полезная модель, именуемая ниже термозапорный клапан, предназначена для автоматического перекрытия газопровода при превышении установленной температуры.

Заявителю известно большое число аналогичных термозапорных клапанов. В общем случае конструкция термозапорного клапана содержит корпус со штуцерами для подключения к газопроводу и седлом, запорный элемент, расположенный внутри корпуса, устройство для запасания механической энергии (как правило, пружина), посредством которого осуществляется перемещение запорного элемента при срабатывании термозапорного клапана, а также стопорный элемент, разрушающийся и (или) деформирующийся при превышении установленной температуры срабатывания. При температурах, меньших температуры срабатывания, стопорный элемент препятствует перемещению запорного элемента и перекрытию им седла. При тепловом разрушении и (или) деформации стопорного элемента устройство для запасания механической энергии (пружина) перемещает запорный элемент и обеспечивает прижатие его к седлу, перекрывая последнее.

Конкретные реализации термозапорных клапанов отличаются от данного выше описания конструктивными или функциональными деталями. В большом числе известных конструкций запорный элемент располагается в потоке газа, выполнен в виде золотника и ориентируется при помощи штанги (патенты Великобритании GB 1521718, GB 1594982, патент США US 4974623, патент ФРГ DE 3436582, патенты РФ №2189515, №2221179), либо выполнен в виде шара без дополнительных ориентирующих конструктивных элементов (патенты РФ №2149303, №2199693, №2206811), при этом стопорный элемент выполняется из легкоплавкого сплава или термопластичного полимера. Как варианты описанного выше известна конструкция, дополнительно оснащенная электромагнитным механизмом для повторного взведения запорного элемента без разгерметизации корпуса (патент ФРГ DE 4316584), и конструкции, термочувствительный элемент которых изготавливается из материала с эффектом памяти формы (патенты РФ №2171937, №2182272).

Общим недостатком указанных конструкций является то, что запорный элемент располагается непосредственно в потоке газа.

Это повышает гидродинамическое сопротивление системы, что в ряде случаев нежелательно. Заявителю также известно два устройства, в которых запорный элемент располагается вне потока среды (А.с. СССР №892092, патент США US 5275194). В первом описан термозапорный клапан, запорный элемент которого имеет форму цилиндра и фиксируется внутри корпуса при помощи термочувствительного элемента, который, в свою очередь, выполнен в виде заполнителя внутренней полости корпуса. Запорный элемент - цилиндр перемещается вдоль своей оси, причем ось цилиндра перпендикулярна оси проходного отверстия между входом и выходом клапана. Во втором патенте описан термозапорный клапан, запорный элемент которого также имеет форму цилиндра и фиксируется внутри корпуса при помощи штифта, механически связанного с термочувствительным элементом и упирающегося в канавку на направляющем штоке запорного элемента. Недостаток этого устройства - относительная сложность и повышенное гидродинамическое сопротивление, вызванное тем, что поток газа в клапане дважды меняет направление. Недостатками обеих конструкций является несколько худшая герметичность перекрытия потока газа, что требует дополнительных конструктивных решений.

Аналогом полезной модели является устройство по патенту РФ №2149303. Задачами полезной модели является снижение гидродинамического сопротивления открытого термозапорного клапана при одновременном повышении надежности и стабильности температуры срабатывания, а также сохранении высокой герметичности перекрытия потока газа при срабатывании, свойственной конструкциям с седлом и золотником. Существенное снижение гидродинамического сопротивления предлагаемого открытого термозапорного клапана в сравнении с аналогом может быть достигнуто при удалении из потока газа запорного элемента, площадь поперечного сечения которого велика. Повышение надежности и особенно стабильности температуры срабатывания возможно при удалении термочувствительного стопорного элемента из охлаждающего его потока газа.

Технический результат достигается тем, что запорный элемент имеет форму шара и располагается вне потока газа, а стопорный элемент представляет собой деталь или сборочную единицу, полностью или частично изготовленную из легкоплавкого материала, и также располагается вне потока газа; вследствие отсутствия охлаждения стопорного элемента потоком газа, а также вследствие хорошего теплового контакта между стопорным элементом и стенкой корпуса термозапорного клапана повышается температурная стабильность срабатывания последнего.

Для пояснения конструкции и принципа работы на фиг.1 изображен эскиз предложенного термозапорного клапана.

Корпус термозапорного клапана 1 представляет собой У-образное сочленение труб. Та часть корпуса, по которой проходит прямой поток газа от входа к выходу термозапорного клапана, геометрически представляет собой прямолинейную часть трубы круглого сечения, и называется ниже прямолинейным участком 2. Часть корпуса, геометрически образованная сопряженным с прямолинейным участком 2 заглушенным отрезком трубы круглого сечения, называется ниже присоединенным участком 3. Оптимальный угол между осями образующих внутренних цилиндрических поверхностей участков 2 и 3 составляет 30-60 градусов. На концах прямолинейного участка 2 выполнены штуцеры 4 и 5 для подключения устройства к газопроводу, а в области сочленения, ближе к выходному штуцеру, располагается седло 6. Внутренний объем присоединенного участка 3 предназначен для размещения в нем стопорного элемента 7, пружины 8 и запорного элемента 9. Запорный элемент 9 представляет собой шар из жесткого теплостойкого материала, на который постоянно действует сила сжатой пружины 8, а его перемещению к седлу 6 препятствует стопорный элемент 7. Стопорный элемент 7 фиксируется в пазу 10, выполненном на внутренней поверхности присоединенного участка 3, и удерживает шар 9 от перемещения к седлу 6.

Предлагаемый термозапорный клапан работает следующим образом. При расплавлении или деформации стопорного элемента 7 или его части запорный элемент 9 освобождается и под действием пружины 8 перемещается и прижимается к седлу 6, перекрывая подачу газа.

Таким образом, предложенный термозапорный клапан обладает меньшим гидродинамическим сопротивлением и большей стабильностью по температуре срабатывания, а также высокой степенью герметичности перекрытия седла.

Термозапорный клапан, содержащий корпус с прямолинейным участком, геометрически представляющим собой прямолинейную часть трубы круглого сечения, на концах которого выполнены штуцеры для подключения устройства к газопроводу, а внутри выполнено седло с круглым проходным отверстием, запорный элемент, представляющий собой шар из жесткого теплостойкого материала, расположенный внутри корпуса, пружина, посредством которой осуществляется перемещение запорного элемента при срабатывании термозапорного клапана, а также стопорный элемент, представляющий собой деталь или сборочную единицу, полностью или частично изготовленную из легкоплавкого или термопластического материала, расплавляющего и (или) деформирующегося при превышении температуры срабатывания, причем при температуре, меньшей температуры срабатывания, стопорный элемент препятствует перемещению запорного элемента, отличающийся тем, что запорный элемент, стопорный элемент и пружина располагаются вне потока газа в объеме присоединенного участка корпуса, причем присоединенный участок корпуса геометрически представляет собой заглушенный отрезок трубы круглого сечения, сопряженный с прямолинейным участком корпуса под острым углом.



 

Наверх