Фотоэлектрический модуль (варианты)

 

Полезная модель относится к области солнечной энергетики и в частности к фотоэлектрическим модулям. Наиболее успешно настоящее изобретение может быть применено в наземных солнечных энергоустановках с концентраторами излучения, предназначенных для систем автономного энергоснабжения в различных климатических зонах. Фотоэлектрический модуль, содержит боковые стенки (1) и фронтальную панель (2) из силикатного стекла с линзами (3) Френеля на ее тыльной стороне, а так же тыльную панель (4) из силикатного стекла с солнечными фотоэлементами (5) и теплоотводящими основаниями (6) на ее фронтальной стороне. Новым в модуле является то, что между панелями (2 и 4) установлена дополнительная промежуточная панель (7) из силикатного стекла, на фронтальной стороне которой установлены плосковыпуклые линзы (8), соосные с соответствующими линзами (3) Френеля, при этом расстояние между промежуточной панелью (7) и теплоотводящими основаниями (6) больше толщины фотоэлементов (5), но не превышает разность величин фокусного расстояния плосковыпуклых линз (8) и толщины промежуточной панели (7).

Полезная модель относится к области солнечной энергетики и в частности к фотоэлектрическим модулям. Наиболее успешно настоящее изобретение может быть применено в наземных солнечных энергоустановках с концентраторами излучения, предназначенных для систем автономного энергоснабжения в различных климатических зонах.

Известно, что применение концентраторов излучения при условии согласования их параметров с параметрами солнечных фотоэлементов позволяет не только поднять энергетическую эффективность фотоэлектрических модулей, но и улучшить их энерго-экономические показатели за счет уменьшения расхода дорогостоящих полупроводниковых материалов. Конструкция фотоэлектрических модулей с концентраторами солнечного излучения должна обеспечивать его долговременное эффективное функционирование в реальных условиях эксплуатации при возможно более низкой стоимости генерируемой электрической мощности. Учитывая, что область применения фотоэлектрических модулей - естественные условия окружающей среды, должна быть обеспечена защита оптической системы, полупроводникового элемента токовыводящих контактов от воздействия колебаний температуры и давления, ультрафиолетового излучения Солнца, высокой влажности, ветра, пыли, града и др. Кроме того при поглощении концентрированного излучения, часть его тратится на разогрев элемента, в связи с чем возникает необходимость эффективного отвода тепла от полупроводниковой структуры, т.к. излишний нагрев негативно влияет на преобразующие свойства элемента, его

срок службы и выходные характеристики фотоэлектрического модуля.

Известен фотоэлектрический модуль с концентраторами солнечного излучения в виде линз Френеля (смотри книгу В.М.Андреева и др. "Фотоэлектрическое преобразование концентрированного солнечного излучения". Л., "Наука", Ленинрадское отделение, 1989, с.302-303.

Модуль содержит 8 или 16 линз Френеля и соответствующее количество солнечных фотоэлементов, размещенных против линз на алюминиевом листе, который одновременно выполняет роль подложки фотоэлементов, радиатора и металлического корпуса. Для электроизоляции солнечных фотоэлементов от корпуса используются пластины высокоомного кремния, обладающие высокой теплопроводностью. Линзы Френеля изготовлены из органического стекла методом прессования. Для защиты от атмосферных воздействий линзы закрыты листом силикатного стекла. Модуль превосходит по своим технико-экономическим показателям кремниевые солнечные фотоэлектрические модули без концетраторов. Однако, он обладает малой энергопроизводительностью.

Ближайшим аналогом группы полезных моделей является фотоэлектрический модуль с концентраторами солнечного излучения, подробно рассмотренный в материалах международной конференции "CONFERENCE RECORD OF THE TWENTY-EIGHTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE-2000", Anhorage, Alaska, USA, 2000, p.1169-1172.

Модуль содержит боковые стенки из силикатного стекла, на верхних кромках которых закреплена фронтальная панель из силикатного стекла с линзами Френеля, а на нижних кромках закреплена тыльная панель из силикатного стекла с солнечными фотоэлементами и теплоотводящими основаниями.

Линзы Френеля выполнены из силикона, имеют квадратную форму,

расположены вплотную друг к другу и прочно соединены с внутренней поверхность стекла, выполняющего защитную и несущую функции. Каждой линзе Френеля соответствует свой солнечный фотоэлемент, закрепленный на металлическом теплоотводящем основании. Теплоотводящие основания располагаются на фронтальной стороне стекла тыльной панели таким образом, чтобы светоприемная поверхность фотоэлемента находилась в фокусном пятне соответствующей линзы Френеля.

Металлическое теплотводящее основание так же является и одним из электрических контактов солнечного фотоэлемента. Вторым контактом является верхнее металлическое покрытие фольгированного стеклотекстолита, закрепленного на теплоотводящем основании, к которому подведен проволочный контакт, присоединенный другим концом к контактной сетке фотоэлемента. Коммутация солнечных фотоэлементов осуществляется через контакты, прикрепленные к металлическому основанию и верхнему металлическому покрытию стеклотекстолита.

С помощью стеклянных боковых стенок модуля обеспечивается параллельность фронтальной и тыльной панелей, а так же расположение их относительно друг друга с учетом обеспечения точной фокусировки. Крепление стенок между собой и к панелям осуществляется клеем-герметиком, что обеспечивает герметизацию внутреннего пространства модуля от внешней атмосферы и обеспечивает защиту всех элементов фотоэлектрического модуля от внешних факторов.

При работе модуля, ориентированные перпендикулярно солнечным лучам, линзы Френеля концентрируют солнечный свет и фокусируют его на светоприемных поверхностях солнечных фотоэлементов. Солнечные фотоэлементы преобразуют энергию квантов света в электрическую, создавая разность потенциалов на своих контактах.

Вырабатываемая модулем электроэнергия подается к внешнему потребителю или накопителю энергии. Тепло, отводимое от солнечных фотоэлементов, распределяется по металлическим теплоотводящим основаниям. передается стеклу тыльной панели и затем отводится во во внешнюю среду.

Данный модуль превосходит по своим показателям все другие известные фотоэлектрические модули с концентраторами, включая рассмотренный выше аналог. Однако, он имеет недостаточно высокую величину коэффициента концентрации и ширины разореинтационной характеристики модуля, что снижает его энергопроизводительность.

В основу группы заявляемых полезных моделей была положена задача разработать конструкцию фотоэлектрического модуля, в котором оптическая система была бы выполнена таким образом, чтобы обеспечивалось увеличение его энергопроизводительности.

Поставленная задача решается тем, что:

в первом варианте фотоэлектрического модуля, содержащего боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а так же тыльную панель из силикатного стекла с солнечными фотоэлементами и теплоотводящими основаниями на ее тыльной стороне, новым является то, что между упомянутыми панелями установлена дополнительная промежуточная панель из силикатного стекла, на фронтальной стороне которой установлены плосковыпуклые линзы, соосные с соответствующими линзами Френеля, при этом расстояние между промежуточной панелью и теплоотводящими основаниями больше толщины фотоэлементов, но не превышает разность величин фокусного расстояния плосковыпуклых линз и толщины промежуточной панели;

во втором варианте фотоэлектрического модуля, содержащего

боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а так же тыльную панель с солнечными фотоэлементами и теплоотводящим средством на ее фронтальной стороне, новым является то. что теплоотводящее средство выполнено в виде пластины из металла и является тыльной панелью, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на тыльной стороне которой установлены плосковыпуклые линзы, соосные с соответствующими линзами Френеля, при этом расстояние между промежуточной панелью и поверхностью теплоотводящей пластины больше суммы толщин фотоэлемента и плосковыпуклой линзы, но не превышает фокусное расстояние плосковыпуклых линз;

в третьем варианте фотоэлектрического модуля, содержащего боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а так же тыльную панель с солнечными фотоэлементами и теплоотводящим средством на ее фронтальной стороне, новым является то, что теплоотводящее средство выполнено в виде пластины из металла и является тыльной панелью, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на фронтальной стороне которой установлены плосковыпуклые линзы, соосные с соответствующими линзами Френеля, при этом расстояние между промежуточной панелью и поверхностью теплоотводящей пластины больше толщины фотоэлемента, но не превышает разность величин фокусного расстояния плосковыпуклых линз и толщины промежуточной панели;

в четвертом варианте фотоэлектрического модуля, содержаще-боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а так же тыльную панель с солнечными фотоэлементами и теплоотводящими основаниями на ее

фронтальной стороне, новым является то, что теплоотводящие основания выполнены в виде лотков с плоским дном. через центральные продольные линии поверхностей которых проходят оптические оси соответствующих линз Френеля и они образуют тыльную панель, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на тыльной стороне которой установлены плосковыпуклые линзы, соосные с соответствующими линзами Френеля, при этом лотки своими верхними частями герметично соединены с тыльной поверхностью промежуточной панели, а расстояние между промежуточной панелью и поверхностями плоских днищ лотков больше суммы толщин фотоэлемента и плосковыпуклой линзы, но не превышает фокусное расстояние плосковыпуклых линз;

в пятом варианте фотоэлектрического модуля, содержащего боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а так же тыльную панель с солнечными фотоэлементами и теплоотводящими основаниями на ее фронтальной стороне, новым является то, что теплоотводящие основания выполнены в виде лотков с плоским дном, через центральные продольные линии поверхностей которых проходят оптические оси соответствующих линз Френеля и они образуют тыльную панель, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на фронтальной стороне которой установлены плосковыпуклые линзы, соосные с соответствующими линзами Френеля, при этом лотки своими верхними частями герметично соединены с тыльной поверхностью промежуточной панели, а расстояние между промежуточной панелью и поверхностями плоских днищ лотков больше толщины фотоэлемента, но не превышает разность величин фокусного расстояния плосковыпуклых линз и

толщины промежуточной панели.

Использование дополнительного концентратора солнечного излучения позволяет увеличить до максимального значения коэффициент концентрации и сделать шире разореинтационную характеристику модуля <отклонение положения фотоэлектрического модуля от перпендикулярного солнечным лучам) или улучшить энерго-экономичекие показатели модуля за счет уменьшения расхода полупроводниковых материалов в солнечных фотоэлементах. Пространственное разнесение дополнительного концентратора с поверхностью солнечного фотоэлемента позволяет также уменьшить плотность проходящего через него солнечного излучения, и таким образом уменьшить радиационную и температурную нагрузку на дополнительный концентратор, что улучшает эксплуатационные характеристики фотоэлектрического модуля.

Так же новым для всех пяти вариантов полезной модели является то, что в боковых противолежащих стенках фотоэлектрического модуля непосредственно над дополнительной промежуточной и под фронтальной панелями, соответственно, выполнены отверстия для сообщения с окружающей средой внутреннего пространства модуля между этими панелями.

Благодаря такому решению, герметизированным для обеспечения защиты солнечных фотоэлементов от воздействия внешней среды. остается только пространство между близко расположенными тыльной и промежуточной панелями. В этом пространстве заключено небольшое количество воздуха и изменение внутреннего давления практически не вызывает возникновения механических напряжений в конструкции Модуля. Пространство же между фронтальной и дополнительной промежуточной панелями сообщается с окружающей средой. Сообщение с окружающей средой этого пространства, в котором расположены концентраторы из силикона, которые не меняют своих свойств

под воздействием влаги, исключает возникновение перепадов давления между внутренним объемом модуля и атмосферой, таким образом не допуская возникновения сильных механических напряжений в конструкции, имеющих место в ближайшем аналоге.

Ниже сущность заявляемых вариантов полезной модели более подробно разъясняется их подробным описанием со ссылками на прилагаемые чертежи, на которых:

Фиг.1 схематично изображает первый вариант заявляемой полезной модели, поперечное сечение:

Фиг.2 схематично изображает второй вариант заявляемой полезной модели, поперечное сечение:

Фиг.3 схематично изображает третий вариант заявляемой полезной модели, поперечное сечение;

Фиг.4 схематично изображает четвертый вариант заявляемой полезной модели, поперечное сечение;

Фиг.5 схематично изображает пятый вариант заявляемой полезной модели, поперечное сечение.

Согласно первому варианту полезной модели (фиг.1) фотоэлектрический модуль содержит боковые стенки (1) из силикатного стекла, на верхних кромках которых закреплена фронтальная панель (2) из силикатного стекла с линзами (3) Френеля, а на нижних кромках закреплена тыльная панель (4) из силикатного стекла с солнечными фотоэлементами (5) и теплоотводящими основаниями (6).

Линзы (3) Френеля выполнены из силикона, имеют квадратную форму, расположены вплотную друг к другу и прочно соединены с внутренней поверхность стекла, выполняющего защитную и несущую функции. Каждой линзе (3) Френеля соответствует свой солнечный фотоэлемент (5), закрепленный на металлическом теплоотводяшем основании (6). Теплоотводящие основания (6) располагаются на

фронтальной стороне стекла тыльной панели (4) таким образом, чтобы светоприемная поверхность солнечного фотоэлемента (5) находилась на оптической линии соответствующей линзы (3) Френеля.

Между тыльной панелью (4) и фронтальной панелью (2) установлена дополнительная промежуточная панель (7) из силикатного стекла на фронтальной поверхности которой установлены плосковыпуклые линзы (8) из силикона, соосные соответствующим линзам (3) Френеля и солнечным фотоэлементам (5). Расстояние между промежуточной панелью (7) и теплоотводящими основаниями (6) больше толщины фотоэлементов (5), но не превышает разность величин фокусного расстояния плосковыпуклых линз (8) и толщины промежуточной панели (7). В каждом конкретном случае это расстояние определяется оптическими параметрами двух конценраторов солнечного излучения - линз (3) Френеля и плосковыпуклых линз (8) в соответствии с условиями оптимальной фокусировки оптической системы для того, чтобы светоприемные поверхности фотоэлементов (5) находились в фокусном пятне двух концентраторов, соответствующих им линз (3) Френеля и плосковыпуклых линз (8). Плосковыпуклые линзы (8) выбираются короткофокусными, поэтому расстояние между тыльной поверхностью промежуточной панели (7) и фронтальной поверхностью тыльной панели (4) оказывается небольшим по сравнению с расстоянием между фронтальной панелью (2) и промежуточной панелью (7).

В боковых противолежащих стенках (1) непосредственно над дополнительной промежуточной панелью (7) и под фронтальной панелью (2), установлены штуцеры (9). через отверстия которых внутреннее пространство модуля, заключенное между промежуточной панелью (7) и фронтальной панелью (2) сообщается с окружающей средой. Таким образом, герметизированным для обеспечения защиты

солнечных фотоэлементов (5) от воздействия внешней среды, остается только пространство между близко расположенными тыльной панелью (4) и промежуточной панелью (7). В этом пространстве заключено небольшое количество воздуха и изменение внутреннего давления при колебании температуры практически не вызывает возникновения механических напряжений в конструкции модуля. В пространстве между фронтальной панелью (2) и промежуточной панелью (7) расположены линзы (3) Френеля и плосковыпуклые линзы (8), выполненные из силикона, которые не меняют своих свойств под воздействием влаги. Сообщение с окружающей средой этого пространства полностью исключает возникновение перепадов давления между внутренним объемом модуля и атмосферой при колебаниях температуры. Таким образом, благодаря такому решению исключается возникновение механических напряжений в конструкции модуля в отличие от прототипа, в котором при интенсивных колебаниях температуры механические напряжения могут достигать критического уровня.

Металлическое теплоотводящее основание (6) так же является и одним из электрических контактов солнечного фотоэлемента. Вторым контактом является верхнее металлическое покрытие (10) фольгированного стеклотекстолита, закрепленного на теплоотводящем основании (6), к которому подведен проволочный контакт <на чертежах не показан), присоединенный другим концом к контактной сетке Фотоэлемента (5). Коммутация солнечных фотоэлементов (5) осуществляется через контакты, прикрепленные к металлическому основанию (6) и верхнему металлическому покрытию (10) стеклотекстолита.

С помощью стеклянных боковых стенок (1) модуля обеспечивается параллельность фронтальной, тыльной и промежуточной панелями

(2, 4 и 7), а так же расположение их относительно друг друга с учетом обеспечения точной фокусировки оптической системы. Крепление стенок (1) между собой и к панелям (2, 4 и 7) осуществляется клеем-герметиком (11), что обеспечивает их прочное соединение между собой и герметизацию внутреннего пространства модуля между тыльной и дополнительной панелями (4 и 7> от внешней атмосферы, обеспечивая защиту солнечных фотоэлементов (5) от внешних факторов.

Согласно второму варианту полезной модели (фиг.2) фотоэлектрический модуль содержит боковые стенки (1) из силикатного стекла, на верхних кромках которых закреплена фронтальная панель (2) из силикатного стекла с линзами (3) Френеля, а на нижних кромках закреплена металлическая теплоотводящая пластина (6) с солнечными фотоэлементами (5). Таким образом металлическая пластина (6) является тыльной панелью фотоэлектрического модуля.

Линзы (3) Френеля выполнены из силикона и прочно соединены с внутренней поверхностью стекла фронтальной панели (2). Каждой линзе (3) Френеля соответствует свой солнечный фотоэлемент (5), закрепленный на металлической теплоотводяшей пластине (6). Теплоотводящая пластина (6) располагается таким образом, чтобы светоприемные поверхности солнечных фотоэлементов (5) находились на оптических линиях соответствующих линз (3) Френеля.

Между металлической пластиной (6) и фронтальной панелью (2) установлена дополнительная промежуточная панель (7) из силикатного стекла на тыльной поверхности которой установлены плосковыпуклые линзы (8) из силикона, соосные соответствующим линзам (3) Френеля и солнечным Фотоэлементам (5). Расстояние между промежуточной панелью (7) и поверхностью теплоотводяшей пластины (6) больше суммы толщин фотоэлемента (5) и плосковыпуклой

линзы (8), но не превышает ее фокусное расстояние.

В боковых противолежащих стенках (1) непосредственно над дополнительной промежуточной панелью (7) и под фронтальной панелью (2). установлены штуцеры (9), через отверстия которых внутреннее пространство модуля, заключенное между промежуточной панелью (7) и фронтальной панелью (2) сообщается с окружающей средой. Таким образом, герметизированным для обеспечения защиты солнечных фотоэлементов (5) от воздействия внешней среды, остается только пространство между близко расположенными тыльной поверхностью промежуточной панели (7) и фронтальной поверхностью теплоотводяшей пластины (6). Плосковыпуклые линзы (8), так же как и в первом варианте, выбираются короткофокусными, за счет чего расстояние между тыльной поверхностью промежуточной панели (7) и фронтальной поверхностью металлической теплоотводящей пластины (4) оказывается небольшим по сравнению с расстоянием между фронтальной панелью (2) и промежуточной панелью (7).

Металлическая теплоотводящая пластина (6) так же, как и в рассмотренном выше варианте является одним из электрических контактов солнечного фотоэлемента. Вторым контактом является верхнее металлическое покрытие (10) фольгированного стеклотекстолита. закрепленного на теплоотводяием основании (6). к которому подведен проволочный контакт (на чертежах не показан), присоединенный другим концом к контактной сетке фотоэлемента (5). Коммутация солнечных фотоэлементов (5) осуществляется через контакты, прикрепленные к металлическому основанию (6) и верхнему металлическому покрытию (10) стеклотекстолита.

Крепление стенок (1) и панелей (2, 4 и 7) между собой в данном варианте модуля осуществляется так же, как и в первом варианте клеем-герметиком (11).

На тыльную сторону металлического теплоотводящего основания (6) нанесено защитное токо-влагоизоляционное покрытие (12).

Данный вариант модуля обладает по сравнению с прототипом теми же преимуществами, что и рассмотренный выше вариант. Кроме того данный вариант обеспечивает более эффективный отвод тепла от солнечных фотоэлементов (5) через металлическую пластину в окружающую среду, в отличие от первого варианта, где отвод тепла осуществляется через стеклянную пластину тыльной панели.

Согласно третьему варианту полезной модели (фиг.3) фотоэлектрический модуль содержит боковые стенки (1) из силикатного стекла, на верхних кромках которых закреплена фронтальная панель (2) из силикатного стекла с линзами (3) Френеля, а на нижних кромках закреплена металлическая теплоотводящая пластина (6) с солнечными фотоэлементами (5). Таким образом металлическая пластина (6) является тыльной панелью фотоэлектрического модуля.

Линзы (3) Френеля выполнены из силикона прочно соединены с внутренней поверхность стекла фронтальной панели (2). Каждой линзе (3) Френеля соответствует свой солнечный фотоэлемент (5), закрепленный на металлической пластине (6). Металлическая пластина (6) располагается таким образом, чтобы центры светоприемных поверхностей солнечных фотоэлементов (5) находились на оптических осях соответствующих линз (3) Френеля.

Между металлической теплоотводящей пластиной (6) и фронтальной панелью (2) установлена дополнительная промежуточная панель (7) из силикатного стекла на фронтальной поверхности которой установлены плосковыпуклые линзы (8) из силикона, соосные соответствующим линзам (3) Френеля и солнечным фотоэлементам (5). Расстояние между промежуточной панелью (7) и теплоотводящими основаниями <6) больше толщины фотоэлементов (5), но не превышает

разность величин фокусного расстояния плосковыпуклых линз (8) и толщины промежуточной панели (7).

В боковых противолежащих стенках (1I непосредственно над дополнительной промежуточной панелью (7) и под фронтальной панелью (2), установлены штуцеры (9), через отверстия которых внутреннее пространство модуля, заключенное между промежуточной панелью (7> и фронтальной панелью (2) сообщается с окружающей средой. Таким образом, так же как и в рассмотренных выше вариантах герметизированным для обеспечения защиты солнечных фотоэлементов (5) от воздействия внешней среды, остается только пространство между близко расположенными тыльной панелью (4) и промежуточной панелью (7). Таким образом в этой части конструкции второй вариант модуля абсолютно идентичен рассмотренным выше вариантам.

Металлическое теплоотводящее основание (6) так же, как в рассмотренном выше варианте является одним из электрических контактов солнечного фотоэлемента. Вторым контактом является верхнее металлическое покрытие (10) фольгированного стеклотекстолита, закрепленного на теплоотводящем основании (6), к которому подведен проволочный контакт (на чертежах не показан), присоединенный другим концом к контактной сетке фотоэлемента (5). Коммутация солнечных фотоэлементов (5) осуществляется через контакты. прикрепленные к металлическому основанию (6) и верхнему металлическому покрытию (10) стеклотекстолита.

На тыльную сторону металлического теплоотводящего основания (6) нанесено токо-влагоизоляционное покрытие (12).

Данный вариант модуля обладает по сравнению с прототипом теми же преимуществами, что и рассмотренный выше второй вариант. Кроме того, по сравнению со вторым вариантом, за счет размещения

плосковыпуклых линз (8) на фронтальной стороне промежуточной панели (7), расстояние между ней и теплоотводящим основанием (6) будет меньше при тех же оптических параметрах дополнительного концентратора (плосковыпуклой линзы (8)). За счет этого повышается компактность модуля и уменьшается объем герметичного пространства между теплоотводящим основанием (6) и тыльной поверхностью промежуточной панели, что дополнительно уменьшает механические напряжения при колебаниях температуры окружающей среды.

Согласно четвертому варианту полезной модели (фиг.4) фотоэлектрический модуль содержит боковые стенки (1) из силикатного стекла, на верхних кромках которых закреплена фронтальная панель (2) из силикатного стекла с линзами (3) Френеля, а на нижних кромках закреплена промежуточная панель (7) из силикатного стекла. Под ее тыльной поверхностью размещены теплоотводящие основания (6), выполненные в виде лотков с плоским днищем. На центральных продольных линиях лотков равномерно закреплены солнечные фотоэлементы (5). Лотки своими отогнутыми краями при помощи любых известных средств герметично прикреплены к тыльной поверхности стеклянной промежуточной панели (7), образуя тыльную панель (4). На тыльной поверхности промежуточной панели (7) установлены плосковыпуклые линзы <8) из силикона, соосные с соответствующими линзам (3) Френеля. Расстояние между промежуточной панелью (7) и поверхностями плоских днищ лотков больше суммы толщин фотоэлемента и плосковыпуклой линзы, но не превышает ее фокусное расстояние.

В боковых противолежащих стенках (1), так же как и во всех рассмотренных выше вариантах, непосредственно над дополнительной промежуточной панелью (7) и под фронтальной панелью (2), установлены штуцеры (9), через отверстия которых внутреннее пространство

модуля, заключенное между промежуточной панелью (7) и фронтальной панелью (2) сообщается с окружающей средой. Таким образом, в данном варианте герметизированным для обеспечения защиты солнечных фотоэлементов (5) от воздействия внешней среды, остается только суммарный объем, образованный пространствами между тыльной поверхностью промежуточной панели (7) и внутренними поверхностями лотков.

Металлические теплоотводящие основания (6) (лотки) так же, как и во всех рассмотренных выше вариантах являются одним из электрических контактов солнечного фотоэлемента. Вторым контактом является верхнее металлическое покрытие (10) фольгированного стеклотекстолита, закрепленного на теплоотводящем основании (6), к которому подведен ленточный контакт (на чертежах не показан), присоединенный другим концом к контактной сетке фотоэлемента (5). В этом варианте для всех солнечных фотоэлеметов группы, размещенной в лотке, эти контакты будут общими, т.е. солнечные фотоэлементы (5) будут соединены параллельно. Коммутация между теплоотводяаими основаниями (6) (лотками) осуществляется через металлические контакты на чертеже не показаны), пара которых присоединена к каждому основанию (6).

Крепление стенок (1) и панелей (2, 4 и 7) между собой в данном варианте модуля осуществляется так же, как и во всех рассмотренных выше вариантах.

На тыльную сторону металлических лотков нанесено защитное токо-влагоизоляционное покрытие (12).

Данный вариант модуля по сравнению с прототипом обладает теми же преимуществами, что и рассмотренные выше варианты. Кроме того, в данном варианте появляется дополнительное преимущество, связанное с тем. что использование теплоотводящих оснований (6)

(лотков) с группой коммутированных солнечных фотоэлементов позволяет упростить процесс сборки фотоэлектрических модулей, давая возможность применения при их производстве автоматизированные технологические процессы, широко используемые в оптоэлектронной промышленности.

Согласно пятому варианту полезной модели (фиг.5) фотоэлектрический модуль содержит боковые стенки (1) из силикатного стекла, на верхних кромках которых закреплена фронтальная панель (2) из силикатного стекла с линзами (3) Френеля, а на нижних кромках закреплена промежуточная панель (7) из силикатного стекла. Под ее тыльной поверхностью размешены теплоотводящие основания (6), выполненные в виде лотков с плоским днищем. На центральных продольных линиях лотков равномерно закреплены солнечные фотоэлементы (5). Лотки своими отогнутыми краями при помощи любых известных средств герметично прикреплены к тыльной поверхности стеклянной промежуточной панели (7), образуя тыльную панель (4).

На фронтальной поверхности промежуточной панели (7) установлены плосковыпуклые линзы (8) из силикона, соосные с соответствующими линзам (3) Френеля. Расстояние между промежуточной панелью (7) и теплоотводяиими основаниями (6) больше толщины фотоэлементов (5), но не превышает разность величин фокусного расстояния плосковыпуклых линз (8) и толщины промежуточной панели (7).

В боковых противолежащих стенках {1), так же как и во всех рассмотренных выше вариантах, непосредственно над дополнительной промежуточной панелью (7) и под фронтальной панелью (2), установлены штуцеры (9), через отверстия которых внутреннее пространство модуля, заключенное между промежуточной панелью (7) и

фронтальной панелью (2) сообщается с окружающей средой.

Электрические связи между солнечными фотоэлементами (5) и коммутация между теплоотводящими основаниями (6) (лотками) в данном варианте фотоэлектрического модуля осуществляются так же как и в четвертом варианте

Крепление стенок и панелей модуля между собой в данном варианте осуществляется так же, как и во всех рассмотренных выше вариантах. На тыльную сторону металличеких лотков нанесено защитное токо-влагоизоляционное покрытие (12).

Данный вариант модуля по сравнению с прототипом обладает теми же преимуществами, что и рассмотренный выше вариант. Кроме того, в данном варианте по сравнению с четвертым вариантом дополнительно уменьшается суммарный объем, образованный пространствами между тыльной поверхностью промежуточной панели (7) и внутренними поверхностями лотков за счет размещения плосковыпуклых линз (8) на фронтальной поверхности промежуточной панели (7).

Работу вариантов заявляемого изобретения рассмотрим на примере работы первого варианта.

При работе модуля, ориентированные перпендикулярно солнечным лучам, линзы (3) Френеля концентрируют солнечный свет и фокусируют его на светоприемных поверхностях солнечных фотоэлементов (5). Фотоэлементы (5) преобразуют энергию квантов света в электрическую, создавая разность потенциалов на своих контактах. Вырабатываемая модулем электроэнергия подается к внешнему потребителю или накопителю энергии. Тепло, отводимое от солнечных фотоэлементов (5). распределяется по металлическим теплоотводящим основаниям (6), передается стеклу тыльной панели (4) и затем отводится во внешнюю среду.

Остальные варианты фотоэлектрических модулей работают аналогично первому варианту. Отличие состоит только в том, что тепло отводится от теплоотводящих оснований (металлических пластин - для второго и третьего вариантов и лотков - для четвертого и пятого вариантов).

Из приведенных конкретных примеров осуществления заявляемых вариантов полезной модели для любого специалиста в данной области совершенно очевидна возможность их реализации с одновременным решением поставленной задачи. При этом так же очевидно, что при реализации вариантов полезной модели могут быть сделаны незначительные изменения в их конструкции, которые однако не будут выходить за пределы, определяемые приводимой ниже формулой вариантов полезной модели.

Заявляемые варианты фотоэлектрического модулей просты по конструкции. Обладают высокими прочностными характеристиками, обеспечивающими надежную и долговременную эксплуатацию. Высокотехнологичны при изготовлении. Обладают большой энергопроизводительностью и высокими технико-экономическими показателями.

1. Фотоэлектрический модуль, содержащий боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также тыльную панель из силикатного стекла с солнечными фотоэлементами и теплоотводяшими основаниями на ее фронтальной стороне, отличающийся тем, что между упомянутыми панелями установлена дополнительная промежуточная панель из силикатного стекла, на фронтальной стороне которой установлены плоско-выпуклые линзы, соосные с соответствующими линзами Френеля, при этом расстояние между промежуточной панелью и теплоотводящими основаниями больше толщины фотоэлементов, но не превышает разность величин фокусного расстояния плоско-выпуклых линз и толщины промежуточной панели.

2. Фотоэлектрический модуль по п.1, отличающийся тем, что в его боковых противолежащих стенках, непосредственно над дополнительной промежуточной и под фронтальной панелями, соответственно, выполнены отверстия для сообщения с окружающей средой внутреннего пространства модуля между этими панелями.

3. Фотоэлектрический модуль, содержащий боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также тыльную панель с солнечными фотоэлементами и теплоотводящим средством на ее фронтальной стороне, отличающийся тем, что теплоотводящее средство выполнено в виде пластины из металла и является тыльной панелью, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на тыльной стороне которой установлены плоско-выпуклые линзы, соосные с соответствующими линзами Френеля, при этом расстояние между промежуточной панелью и поверхностью теплоотводящей пластины больше суммы толщин фотоэлемента и плоско-выпуклой линзы, но не превышает ее фокусное расстояние.

4. Фотоэлектрический модуль по п.3, отличающийся тем, что в его боковых противолежащих стенках, непосредственно над дополнительной промежуточной и под фронтальной панелями, соответственно, выполнены отверстия для сообщения с окружающей средой внутреннего пространства модуля между этими панелями.

5. Фотоэлектрический модуль, содержащий боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также тыльную панель с солнечными фотоэлементами и теплоотводящим средством на ее фронтальной стороне, отличающийся тем, что теплоотводящее средство выполнено в виде пластины из металла и является тыльной панелью, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на фронтальной стороне которой установлены плоско-выпуклые линзы, соосные с соответствующими линзами Френеля, при этом расстояние между промежуточной панелью и поверхностью теплоотводящей пластины больше толщины фотоэлемента, но не превышает разность величин фокусного расстояния плоско-выпуклых линз и толщины промежуточной панели.

6. Фотоэлектрический модуль по п.5, отличающийся тем, что в его боковых противолежащих стенках, непосредственно над дополнительной промежуточной и под фронтальной панелями, соответственно, выполнены отверстия для сообщения с окружающей средой внутреннего пространства модуля между этими панелями.

7. Фотоэлектрический модуль, содержащий боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также тыльную панель с солнечными фотоэлементами и теплоотводящими основаниями на ее фронтальной стороне, отличающийся тем, что теплоотводящие основания выполнены в виде лотков с плоским дном, через центральные продольные линии поверхностей которых проходят оптические оси соответствующих линз Френеля и они образуют тыльную панель, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на тыльной стороне которой установлены плоско-выпуклые линзы, соосные с соответствующими линзами Френеля, при этом лотки своими верхними частями герметично соединены с тыльной поверхностью промежуточной панели, а расстояние между промежуточной панелью и поверхностями плоских днищ лотков больше суммы толщин фотоэлемента и плоско-выпуклой линзы, но не превышает ее фокусное расстояние.

8. Фотоэлектрический модуль по п.7, отличающийся тем, что в его боковых противолежащих стенках, непосредственно над дополнительной промежуточной и под фронтальной панелями, соответственно, выполнены отверстия для сообщения с окружающей средой внутреннего пространства модуля между этими панелями.

9. Фотоэлектрический модуль, содержащий боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также тыльную панель с солнечными фотоэлементами и теплоотводящими основаниями на ее фронтальной стороне, отличающийся тем, что теплоотводящие основания выполнены в виде лотков с плоским дном, через центральные продольные линии поверхностей которых проходят оптические оси соответствующих линз Френеля и они образуют тыльную панель, между которой и фронтальной панелью установлена дополнительная промежуточная панель из силикатного стекла, на фронтальной стороне которой установлены плоско-выпуклые линзы, соосные с соответствующими линзами Френеля, при этом лотки своими верхними частями герметично соединены с тыльной поверхностью промежуточной панели, а расстояние между промежуточной панелью и поверхностями плоских днищ лотков больше толщины фотоэлемента, но не превышает разность величин фокусного расстояния плоско-выпуклых линз и толщины промежуточной панели.

10. Фотоэлектрический модуль по п.9, отличающийся тем, что в его боковых противолежащих стенках, непосредственно над дополнительной промежуточной и под фронтальной панелями, соответственно, выполнены отверстия для сообщения с окружающей средой внутреннего пространства модуля между этими панелями.



 

Похожие патенты:

Транспортный монитор относится к области охраны окружающей среды, а точнее к области радиационного неразрушающего контроля и может быть использован для обнаружения источников гамма- или гамма-нейтронного излучения - ядерных материалов и радиоактивных веществ - при проезде транспортных средств через контрольно-пропускные пункты предприятий, организаций и служб и выработки сигнала оповещения при обнаружении ядерных материалов или радиоактивных веществ.
Наверх