Тепловая электрическая станция

 

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии. Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии. Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом теплообменника-испарителя, выход теплообменника-испарителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. Таким образом, технический результат достигается за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, которую осуществляют путем нагрева в теплообменнике-испарителе низкокипящего рабочего тела (сжиженного пропана C3 H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. 1 з.п. ф-лы, 1 ил.

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU 2269014, МПК F01K 17/02, 27.01.2006).

Основным недостатком прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.

Кроме этого, недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом теплообменника-испарителя, выход теплообменника-испарителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Таким образом, технический результат достигается за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, которую осуществляют путем нагрева в теплообменнике-испарителе низкокипящего рабочего тела (сжиженного пропана C3 H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с воздушным охлаждением, теплообменником-рекуператором, и теплообменник-испаритель.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - конденсатор воздушного охлаждения,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-испаритель,

15 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-испаритель 14, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11.

Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 15, конденсатор 8 воздушного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 15, который соединен по нагреваемой среде с входом теплообменника-испарителя 14, выход теплообменника-испарителя 14 по нагреваемой среде соединен с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 15, выход теплообменника-рекуператора 15 соединен по греющей среде с конденсатором 8 воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Предлагаемая тепловая электрическая станция работает следующим образом.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование избыточной низкопотенциальной тепловой энергии обратной сетевой воды, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который в начале направляют на нагрев в теплообменник-рекуператор 15, а затем направляют на испарение и перегрев в теплообменник-испаритель 14, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

Температура кипения сжиженного пропана C3H8 сравнительна низка (293 К при давлении 0,833 МПа), поэтому в теплообменнике-испарителе 14, в процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8, происходит испарение сжиженного пропана C3H8 и его перегрев до температуры в интервале от 308,15 К до 333,15 К. После теплообменника-испарителя 14 перегретый газообразный пропан C3H8 направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 15 для снижения температуры.

В теплообменнике-рекуператоре 15 в процессе отвода теплоты на нагрев сжиженного пропана C 3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод вентилятора воздушного охлаждения.

Далее его температуру снижают и сжижают в конденсаторе 8 воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После конденсатора 8 воздушного охлаждения в сжиженном состоянии пропан C3 H8 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Для решения проблемы излишнего потребления пресной воды настоящая полезная модель позволяет осуществить воздушное охлаждение теплового двигателя 5. Применение конденсатора 8 воздушного охлаждения позволяет его эксплуатировать в условиях холодного климата со средней температурой воздуха в наиболее холодный период не ниже 218 К. Конденсатор 8 воздушного охлаждения имеет более длительный срок службы по сравнению с конденсатором водяного охлаждения из-за меньшего загрязнения и коррозии наружной поверхности теплообмена.

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, а также основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор воздушного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом теплообменника-испарителя, выход теплообменника-испарителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором воздушного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.

2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.



 

Похожие патенты:

Изобретение относится к теплоэнергетике, в частности к энергетическим комплексам, предназначенным для теплоснабжения и горячего водоснабжения (ГВС) жилых, промышленных и общественных зданий и технологических потребителей

Полезная модель относится к теплоэнергетике и может быть применена в системах теплоснабжения и электроснабжения городов, на районных тепловых станциях и котельных, где генерируется горячая вода

Полезная модель относится к области технологии добычи, транспорта и переработки углеводородного сырья, в частности к установкам когенерации электрической и тепловой энергии и водоснабжения и может быть использована в газовой, нефтяной и газоперерабатывающей промышленности
Наверх