Тепловая электрическая станция

 

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии. Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии. Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H 8. Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, которую осуществляют путем нагрева в маслоохладителе низкокипящего рабочего тела (сжиженного пропана C3 H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. 1 з.п. ф-лы, 1 ил.

Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.

Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU 2269014, МПК F01K 17/02, 27.01.2006).

Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.

Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, которую осуществляют путем нагрева в маслоохладителе низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным охлаждением и теплообменником-рекуператором.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - конденсатор водяного охлаждения,

9 - конденсатный насос,

10 - система маслоснабжения подшипников паровой турбины,

11 - сливной трубопровод,

12 - маслобак,

13 - маслонасос,

14 - маслоохладитель,

15 - напорный трубопровод,

16 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, а также систему 10 маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод 11, маслобак 12, маслонасос 13 и маслоохладитель 14, выход которого по нагреваемой среде соединен с напорным трубопроводом 15.

Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 16, конденсатор 8 водяного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 16, который соединен по нагреваемой среде с входом маслоохладителя 14, выход маслоохладителя 14 по нагреваемой среде соединен с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 16, выход теплообменника-рекуператора 16 соединен по греющей среде с конденсатором 8 водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Предлагаемая тепловая электрическая станция работает следующим образом.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование низкопотенциальной тепловой энергии системы 10 маслоснабжения подшипников паровой турбины 1, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3 H8, который в начале направляют на нагрев в теплообменник-рекуператор 16, а затем направляют на испарение и перегрев в маслоохладитель 14, куда поступает нагретое масло системы 10 маслоснабжения подшипников паровой турбины 1 с температурой в интервале от 313,15 К до 348,15 К.

Температура кипения сжиженного пропана С 3Н8 сравнительна низка (293 К при давлении 0,833 МПа), поэтому в маслоохладителе 14, в процессе теплообмена нагретого масла с сжиженным пропаном C3H8, происходит испарение сжиженного пропана С3Н8 и его перегрев до температуры в интервале от 308,15 К до 338,15 К. После маслоохладителя 14 перегретый газообразный пропан C 3H8 направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H 8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 16 для снижения температуры.

В теплообменнике-рекуператоре 16 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на конденсатор 8 и затраты мощности на привод циркуляционных насосов.

Далее, при снижении температуры газообразного пропана С3Н8, происходит его сжижение в конденсаторе 8 водяного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 К до 283,15 К.

После конденсатора 8 водяного охлаждения в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя 5. Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Конденсатор 8 водяного охлаждения обладает большей эффективностью теплопередачи по сравнению с воздушным охлаждением и не требует больших площадей теплообменной поверхности. При этом затраты мощности на привод циркуляционных насосов конденсатора 8 водяного охлаждения меньше, чем на привод вентиляторов конденсатора воздушного охлаждения.

1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер с электрогенератором, теплообменник-рекуператор, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом теплообменника-рекуператора, который соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя по нагреваемой среде соединен с входом турбодетандера, выход которого соединен по греющей среде с теплообменником-рекуператором, выход теплообменника-рекуператора соединен по греющей среде с конденсатором водяного охлаждения, выход которого соединен по нагреваемой среде с входом конденсатного насоса, образуя замкнутый контур охлаждения.

2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С 3Н8.



 

Похожие патенты:

Изобретение относится к теплоэнергетике, в частности к энергетическим комплексам, предназначенным для теплоснабжения и горячего водоснабжения (ГВС) жилых, промышленных и общественных зданий и технологических потребителей

Полезная модель относится к теплоэнергетике и может быть применена в системах теплоснабжения и электроснабжения городов, на районных тепловых станциях и котельных, где генерируется горячая вода

Полезная модель относится к области технологии добычи, транспорта и переработки углеводородного сырья, в частности к установкам когенерации электрической и тепловой энергии и водоснабжения и может быть использована в газовой, нефтяной и газоперерабатывающей промышленности
Наверх