Струйный насос

Авторы патента:


 

Полезная модель относится к насосостроению, в частности, к струйным насосам, и может быть использована в нефтяной, газовой и других отраслях промышленности для добычи из скважин жидкостей, газов и газожидкостных смесей, в том числе может быть использована при создании технологий и техники для систем сбора и подготовки нефти и газа, и для водогазового воздействия на нефтяные пласты. Задачей, на решение которой направлено настоящее техническое решение, является повышение технологичности и расширение области применения струйных насосов, в особенности, при добыче нефти. Технический результат достигается тем, что струйный насос, содержит корпус сопла, камеру смешения, диффузор и износостойкую проточную вставку, размещенную в корпусе сопла. Износостойкая проточная вставка выполнена разъемной и состоит, по крайней мере, из двух частей, контактирующих друг с другом по плоскости разъема. При этом плоскость разъема проходит через продольную ось износостойкой проточной вставки. Струйный насос может иметь исполнение, когда и камера смешения выполнена разъемной и состоит, по крайней мере, из двух частей, контактирующих друг с другом по плоскости разъема. Техническим результатом является создание более технологичной конструкции сопла и проточной части струйного насоса, что позволит широко использовать известные эффективные технологии упрочнения деталей, в том числе и технологии упрочнения наружных поверхностей деталей.

Полезная модель относится к насосостроению, в частности, к струйным насосам, и может быть использована в нефтяной, газовой и других отраслях промышленности для добычи из скважин жидкостей, газов и газожидкостных смесей, в том числе может быть использована при создании технологий и техники для систем сбора и подготовки нефти и газа, и для водогазового воздействия на нефтяные пласты.

Известен струйный насос, содержащий корпус сопла, камеру смешения, диффузор и износостойкую проточную вставку, размещенную в корпусе сопла (Свидетельство на полезную модель 321, F04F 05/10. Струйный насос. Опубликовано: 16.04.1995).

Недостатком известного струйного насоса является относительно низкая технологичность изготовления сопла и, в связи с этим, относительно узкая область применения таких струйных насосов.

Задачей, на решение которой направлено настоящее техническое решение, является повышение технологичности и расширение области применения струйных насосов, в особенности, при добыче нефти.

Техническим результатом является создание более технологичной конструкции сопла и проточной части струйного насоса, что позволит широко использовать известные эффективные технологии упрочнения деталей, в том числе и технологии упрочнения наружных поверхностей деталей. При этом снижаются расходы на стадии изготовления и на стадии эксплуатации струйных насосов.

Указанный технический результат достигается тем, что струйный насос, содержит корпус сопла, камеру смешения, диффузор и износостойкую проточную вставку, размещенную в корпусе сопла. Износостойкая проточная вставка выполнена разъемной и состоит, по крайней мере, из двух частей, контактирующих друг с другом по плоскости разъема. При этом плоскость разъема проходит через продольную ось износостойкой проточной вставки.

Струйный насос может иметь исполнение, когда и камера смешения выполнена разъемной и состоит, по крайней мере, из двух частей, контактирующих друг с другом по плоскости разъема.

На фигурах 1-2 для удобства описания заявляемого технического решения представлены дополнительные графические материалы.

На фигуре 1 представлена схема струйного насоса, с продольным разрезом.

На фигуре 2 в изометрии представлен корпус сопла и износостойкая проточная вставка, которая выполнена разъемной и состоит из двух частей, контактирующих друг с другом по плоскости разъема. Для удобства описания конструкции две части износостойкой проточной вставки смещены вдоль продольной оси и раздвинуты друг относительно друга.

Струйный насос, по фигурам 1-2, содержит корпус сопла 1, камеру смешения 2, диффузор 3 и износостойкую проточную вставку 4, размещенную в корпусе сопла 1. Износостойкая проточная вставка 4 выполнена разъемной и состоит, по крайней мере, из двух частей 5 и 6, контактирующих друг с другом по плоскости разъема 7. При этом плоскость разъема 7 проходит через продольную ось 8 износостойкой проточной вставки 4.

Камера смешения 2 и диффузор 3 выполнены в корпусе 9 струйного насоса. Входной патрубок 10 по фигуре 1 фиксирует износостойкую проточную вставку 4, размещенную в корпусе сопла 1. Входной канал 11 для перекачиваемой среды сообщается с камерой смешения 2, и далее через диффузор 3 сообщается с выходным каналом 12.

Струйный насос также может иметь исполнение, когда и камера смешения 2 выполнена разъемной и состоит, по крайней мере, из двух частей, контактирующих друг с другом по плоскости разъема (на фигурах не показано).

Струйный насос работает следующим образом.

Перекачиваемая среда подается в проточную часть струйного насоса через входной канал 11. Рабочую жидкость подают через входной патрубок 10 в износостойкую проточную вставку 4, размещенную в корпусе сопла 1. В сужающейся части износостойкой проточной вставки 4 потенциальная энергия преобразуется в кинетическую энергию и формируется струя рабочей жидкости, направленная в камеру смешения 2. Поскольку камера смешения 2 заполнена перекачиваемой средой (это может быть жидкость, газ или газожидкостная смесь), на границе струи рабочей жидкости формируется пограничный слой, где происходит перемешивание рабочей жидкости с перекачиваемой средой. Таким образом, за счет перемешивания осуществляется силовое воздействие на перекачиваемую среду, и часть энергии передается от рабочей жидкости к перекачиваемой среде. Передача энергии осуществляется с участием сил трения, по этой причине струйные насосы и были отнесены к группе динамических насосов, насосов трения. Перекачиваемая среда подводится к струе рабочей жидкости, проходя через входной канал 11. Смешанный поток далее проходит через камеру смешения 2. Струйный насос содержит диффузор 3, присоединенный к выходу из камеры смешения 2, в диффузоре 3 снижается скорость течения и кинетическая энергия преобразуется в потенциальную энергию, что сопровождается ростом статической составляющей давления. Из диффузора 3 смесь рабочей жидкости и перекачиваемой среды поступает в выходной канал 12.

Предлагаемое техническое решение позволяет использовать известные эффективные технологии упрочнения деталей (например, технологии наплавки износостойких материалов), в том числе и технологии упрочнения наружных поверхностей деталей, поскольку износостойкая проточная вставка 4 выполнена разъемной и состоит, по крайней мере, из двух частей 5 и 6, контактирующих друг с другом по плоскости разъема 7. При этом плоскость разъема 7 проходит через продольную ось 8 износостойкой проточной вставки 4. С использованием разборной конструкции появляется возможность для упрочнения внутренней поверхности износостойкой проточной вставки 4 путем применения технологии упрочнения, рассчитанных для наружных поверхностей деталей, такая цель достигается при раздельной обработке деталей 5 и 6. Таким образом, решается сложная технологическая задача обработки и контроля качества внутренних поверхностей и каналов малого диаметра, что характерно для производства струйных насосов. Таким образом, решается задача повышения технологичности и расширения области применения струйных насосов, в том числе и при добыче нефти. При этом снижаются расходы на стадии изготовления и на стадии эксплуатации струйных насосов.

Струйный насос, содержащий корпус сопла, камеру смешения, диффузор и износостойкую проточную вставку, размещенную в корпусе сопла, отличающийся тем, что износостойкая проточная вставка выполнена разъемной и состоит, по крайней мере, из двух частей, контактирующих друг с другом по плоскости разъема, при этом плоскость разъема проходит через продольную ось износостойкой проточной вставки.

РИСУНКИ



 

Похожие патенты:
Наверх