Гетероструктурный модулировано-легированный полевой транзистор

 

Полезная модель относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон. Поверх пьедестала расположена подложка из монокристаллического кремния, буферный слой, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия. При этом, барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре. Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора. 3 з.п. ф-лы, 6 илл.

Полезная модель относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний.

Гетероструктурные полевые транзисторы с модулированным легированием (ПТМЛ, MODFET) на основе соединений полупроводниковых материалов групп A IIIBV в настоящее время являются самыми быстродействующими полевыми транзисторами, позволяя одновременно достигать наименьшие коэффициенты шума в ГГц-диапазоне частот. Высокое быстродействие достигается за счет эффекта увеличения дрейфовой скорости электронов, образующих двумерный электронный газ у интерфейса модулировано легированной гетероструктуры (МЛГС).

Из Уровня техники известен полевой СВЧ-транзистор, содержащий подложку, на которой сформирован буферный слой из широкозонного полупроводника, на котором расположен активный слой из узкозонного полупроводника с электродами истока, стока и затвора. Кроме того, активный слой под электродом затвора выполнен неравномерно-легированным. При этом концентрация легирующей примеси в направлении электрод истока-электрод стока монотонно возрастает от значения соответствующего концентрации остаточных примесей до значения соответствующего концентрации примесей в буферном слое, а концентрация примесей в буферном слое на 4-5 порядков превышает концентрацию остаточных примесей в активном слое (см. А.С. СССР 1118245, опубл. 19.06.1995).

Недостатками известного устройства являются низкое значение СВЧ-мощности, низкое значение теплоотвода от активной части транзистора и наличие низкочастотных шумов.

Кроме того, известен полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, слой GaN, барьерный слой, выполненный из двух подслоев: Al0,2Ga0,8 N на нем GaN. На структуре выполнены контакты: сток, исток и затвор с соответствующими промежутками между ними; далее выполнено диэлектрическое покрытие из MgO, Sc2O3 или SiNx. Между контактами диэлектрическое покрытие находится на барьерном слое и служит для защиты открытых поверхностей барьерного слоя от внешних воздействий, см. B. Luo et al. The role of cleaning conditions and epitaxial layer structure on reliability of Sc2O3 and MgO passivation on AlGaN/GaN HEMTS, Solid-State Electronics, 46, pp.2185-2190, 2002.

Недостатками известного устройства являются высокий уровень деградации, обусловленный низким значением теплоотвода от активной части транзистора.

Задачей настоящей полезной модели является устранение всех вышеуказанных недостатков.

Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора.

Технический результат обеспечивается тем, что гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон. Поверх пьедестала расположена подложка из монокристаллического кремния, буферный слой, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещеныдополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия. При этом, барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре.

В соответствии с частными случаями выполнения устройство имеет следующие особенности.

Буферный слой может быть выполнен из AlN или из HfN.

Транзистор содержит дополнительный нелегированный слой, выполненный из твердого раствора AlGaN.

Сущность настоящей полезной модели поясняется следующими иллюстрациями:

фиг.1 - отображает настоящее устройство;

фиг.2 - отображает зависимость доли DX-центров в общем числе введенных доноров от уровня легирования слоя AlXGa1-XN:Si в МЛГС AlGaN/GaN;

фиг.3 - отображает схематическое изображение энергетических зон у модулировано легированного гетероперехода n-AlGaN/GaN;

фиг.4 - приведены экспериментально измеренные зависимости температуры разогрева активной области СВЧ транзистора от времени.

фиг.5 - приведены вольтамперные характеристики мощного транзистора СВЧ без дополнительных слоев на поверхности кристалла транзистора;

фиг.6 - приведены вольтамперные характеристики мощного транзистора СВЧ с дополнительными слоями.

На иллюстрации отображены следующие конструктивные элементы:

1 - фланец марки МД-40;

2 - слой припоя из AuSn;

3 - пьедестал из теплопроводящего слоя CVD поликристаллического алмаза с имплантированными Ni и отожженными приповерхностными слоями с двух сторон;

4 - подслой из AuGe;

5 - монокристаллический слой кремния;

6 - теплопроводящий слой CVD поликристаллического алмаза;

7 - слой монокристаллического кремния;

8 - буферный слой AlN или HfN;

9 - нелегированный слой из GaN;

10 - слой твердого раствора из AlGaN (спейс);

11 - слой твердого раствора из AlGaN n+типа проводимости;

12 - слой твердого раствора из AlGaN (крыша);

13 - низкоомные контактные слои из твердого раствора AlGaN n+типа проводимости, под истоком и стоком;

14 - исток;

15 - затвор;

16 - сток;

17 - омические контакты;

18 - дополнительный теплопроводящий слой поликристаллического алмаза;

19 - дополнительный барьерный слой из двуокиси гафния;

20 - дополнительный барьерный слой из оксида алюминия.

Настоящее устройство производят следующим образом.

На фланце марки МД-40 1 толщиной 1600 мкм, размещен слой припоя состава AuSn 2 толщиной 25 мкм, затем в заготовленный в качестве пьедестала слой теплопроводящего CVD поликристаллического алмаза 3 толщиной ~150 мкм, в обе приповерхностные области которого, предварительно, способом имплантации введен никель и проведен отжиг. Затем после размещения на поверхности теплопроводящего слоя CVD поликристаллического алмаза размещают подслой из AuGe 4 с содержанием Ge до 12%, толщиной ~25 мкм. Затем на поверхности подслоя AuGe 4 последовательно размещают: базовую подложку 5, состоящую из монокристаллического кремния p-типа проводимости, ориентированного по плоскости (III), толщиной менее 10 мкм, и теплопроводящий CVD поликристаллический слой алмаза 6, толщиной 150 мкм, слой монокристаллического кремния 7, толщиной 0,5-20 мкм, буферный слой из AlN 8 (по другому частному случаю выполнения из HfN), толщиной 0,1 мкм.

После размещения слоя CVD поликристаллического алмаза 6, базовая подложка 5 утоняется методами мокрого и сухого травления до толщины 10 мкм.

Поверх буферного слоя 8 размещена эпитаксиальная структура на основе широкозонных III-нитридов в виде слоев 9-12, состоящих из нелегированного буферного слоя GaN 9, слоя твердого раствора AlGaN (спейс) 10, слоя твердого раствора AlGaN n+-типа проводимости 11, слоя твердого раствора AlGaN (крыша) 12.

Между слоем CVD поликристаллического алмаза 6 и слоем GaN 9 располагается переходная область которая служит для уменьшения рассогласования параметров решетки инородной подложки и растущих на ней эпитаксиальных слоев нитрида галлия (и далее - всей гетероструктуры). Слой из GaN 9 предназначен для образования в его приповерхностном слое проводящего канала (двумерного электронного газа (ДЭГ) с высокой подвижностью носителей заряда), возникающего за счет разрыва зон и поляризационных эффектов при образовании гетероперехода AlGaN/GaN. Основным требованием к этому слою является структурное совершенство, достаточное для обеспечения высокой подвижности электронов, и высокого сопротивления. Поэтому канальный слой не легируется, а в ряде случаев используются специальные приемы для обеспечения необходимого высокого удельного сопротивления. Толщина GaN слоя 9 для структур, получаемых методом МПЭ, составляет обычно 1-3 мкм. Система AlGaN слоев 10-12 образует с нижележащим слоем GaN 9 гетеропереход служащий для создания на границе двумерного электронного газа (ДЭГ) с высокой подвижностью. Более широкозонный по сравнению с нитридом галлия и имеющий меньший параметр решетки, слой GaN создает необходимый разрыв зон и упругие напряжения на границе раздела, необходимые для создания высокой плотности носителей заряда в ДЭГ.

После размещения низкоомных подконтактных слоев твердого раствора AlGAN п+типа проводимости под формируют исток 14, затвор 15, сток 16 и омические контакты 17. Кроме того, устройство снабжают дополнительными слоями, размещенными между истоком 14, затвором 15 и стоком 16. Дополнительные слои выполняют в виде теплопроводящего CVD поликристаллического алмаза 18, барьерного слоя из двуокиси гафния 19, и дополнительного барьерного слоя из оксида алюминия 20. При этом слои из двуокиси гафния 19 и оксида алюминия 20 имеют общую толщину 1,0-4,0 нм. В области затвора дополнительные барьерные слои размещены под затвором 15, непосредственно на эпитаксиальной структуре в виде слоя 12 из твердого раствора AlGaN n-типа проводимости.

В настоящем устройстве обеспечивается оптимизация отвода тепла из активной области кристалла и в целом из транзистора и минимизация утечек тока затвора. Это обеспечивается с помощью использования теплопроводящего поликристаллического слоев алмаза (3, 6, 18) и дополнительных барьерных слоев из двуокиси гафния 19 и оксида алюминия 20, которые позволяют минимизировать утечки тока и увеличить значение напряжения пробоя.

Исходя из вышеизложенного, наиболее приемлемой для создания малошумящего HEMT на основе AlGaN/GaN нами была выбрана следующие конструкции гетероструктур:

AlGaN - S.IAlGaN - S.I
AlGaN - n+ AlGaN - n+
AlGaN - S.IAlGaN - S.I
GaN - S.IGaN - S.I
AlGaNзap.слой(AlGaN-AlN) зар.слой
Si - p Si - p
CVD поликристалл. CVD поликристалл.
алмаза алмаза

На фигурах 5, 6 приведены вольт-амперные характеристики: фиг.5 - без слоя изолирующего поликристаллического алмаза, на поверхности

кристалла СВЧ транзистора, между истоком, затвором и стоком и дополнительных барьерных слоев под затвором; 6) - со слоями изолирующего поликристаллического алмаза на поверхности кристалла транзистора, между истоком, затвором и стоком, а также дополнительными слоями (масками) из двуокиси гафния и оксида алюминия под затвором транзистора и поверх изолирующего поликристаллического алмаза.

Размещение слоя изолирующего поликристаллического алмаза на поверхности кристалла СВЧ транзистора, между истоком, затвором и стоком, уменьшает тепловое сопротивление транзисторной структуры более, чем в 1.5 раза, и благодаря наличию на поверхности кристалла транзистора слоя теплопроводящего поликристаллического алмаза одновременно с барьерными слоями двуокиси гафния и оксида алюминия, размещенных под затвором, повышает величину пробивного напряжения более 20%, что обеспечивает повышение эффективности предложенного устройства.

1. Гетероструктурный модулированно-легированный полевой транзистор, содержащий фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты, отличающийся тем, что пьедестал выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон, поверх пьедестала расположена подложка из монокристаллического кремния, буферный слой, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия, при этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм, кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре.

2. Транзистор по п.1, отличающийся тем, что буферный слой выполнен из A1N.

3. Транзистор по п.1, отличающийся тем, что буферный слой выполнен из HfN.

4. Транзистор по п.1, отличающийся тем, что содержит дополнительный нелегированный слой, выполненный из твердого раствора AlGaN.



 

Похожие патенты:

Изобретение относится к области электронной техники и может быть использовано при изготовлении полевых транзисторов с субмикронным барьером Шоттки на арсениде галлия

Полезная модель относится к лазерной технике, в частности к твердотельным импульсным лазерам

Изобретение относится к области полупроводникового приборостроения, в частности к конструированию мощных ключевых полупроводниковых приборов и силовых интегральных схем, сочетающих преимущества полевого управления и биполярного механизма переноса тока (английское наименование MOS-Controlled Power Switches) и может быть использовано в схемах и устройствах энергетической электроники

Полезная модель относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний
Наверх