Система гелиотеплохладоснабжения

 

Полезная модель относится к гелиотеплохладоснабжению и предназначена для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Технической задачей является оптимизация потребляемой мощности на привод вентилятора при подаче воздуха в южный воздухопровод в зависимости от массовой производительности при работе системы гелиотеплохладоснабжения в изменяющихся погодно-климатических условиях эксплуатации. Технический результат по снижению энергозатрат на подачу воздуха в южный воздухопровод при пониженных температурах окружающей среды достигается тем, что система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, при этом снабжена термодинамическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом «горячего» потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом «холодного» потока вихревой трубы, выходным своим патрубком - с помещением, южный воздухопровод, сообщенный с вентилятором, который снабжен приводом с регулятором скорости вращения и регулятором температуры с датчиком температуры, расположенным на входе в южный воздухопровод, кроме того регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, а регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт.

Полезная модель относится к гелиотеплохладоснабжению и предназначена для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Известна система гелиотеплохладоснабжения (см. авторское свидетельство СССР 1322038, кл. F24J 2/42, 1987), содержащая южный выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенный на соответствующих сторонах здания тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовой воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами.

Недостатком данной системы является невозможность поддержания микроклимата внутри здания, как по температуре, так и по степени очистки атмосферного воздуха от загрязнений в виде твердых и каплеобразных частиц, имеющих разнообразный состав при изменяющихся погодно-климатических условиях.

Известна система гелиотеплохладоснабжения (см. авторское свидетельство СССР 1733871, кл. F24J 2/42, 1992, бюл. 18), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением.

Недостатком данной системы являются энергозатраты на работу нагнетательного вентилятора по подаче воздуха в количестве, превышающем нормативно необходимые в условиях эксплуатации при температуре воздуха окружающей среды ниже расчетной и, особенно, при отрицательных температурах атмосферного воздуха из-за отсутствия контроля его температуры, и как следствие возросшей плотности поступающего потока, и, соответственно, потребляемой способности привода вентилятора.

Технической задачей является оптимизация потребляемой мощности на привод вентилятора при подаче воздуха в южный воздухопровод в зависимости от массовой производительности при работе системы гелиотеплохладоснабжения в изменяющихся погодно-климатических условиях эксплуатации.

Технический результат по снижению энергозатрат на подачу воздуха в южный воздухопровод при пониженных температурах окружающей среды достигается тем, что система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, при этом система снабжена термодинамическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом «горячего» потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом «холодного» потока вихревой трубы, выходным своим патрубком - с помещением, южный воздухопровод, сообщенный с вентилятором, который снабжен приводом с регулятором скорости вращения и регулятором температуры с датчиком температуры, расположенным на входе в южный воздухопровод, кроме того регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, а регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт.

На фигуре 1 представлена схема системы гелиотеплохладоснабжения, на фигуре 2 - нагнетательный вентилятор с приводом и регулятором вращения и регулятором температуры с датчиком температуры.

Система содержит воздухопроводы: южный 1, подпольный 2, северный 3, теплообменный 4 и грунтовый 5 с грунтовыми теплопроводящими трубами 6, помещение 7, под которым расположен тепловой аккумулятор 8, вихревую трубу 9 с входом 10 для обрабатываемого воздуха, каналом «холодного» потока 11, соединенным с входом 12 фильтра 13 и каналом «горячего» потока 14, соединенным с грунтовым воздухопроводом 5, фильтр 13 своим выходом 15 соединен с внутренним объемом помещения 7, нагнетательный вентилятор 16, установленный в вентиляционной камере 17 и соединенный подпольным воздухопроводом 2 через воздушные заслонки 18 и 19 с входом 10 вихревой трубы 9 и с выходом 12 фильтра 13, вытяжной вентилятор 20, установленный в вентиляционной камере 21 и соединенный теплообменным воздухопроводом с северным воздухопроводом, осуществляющим выброс воздуха из помещения 7 в атмосферу.

Южный 1 воздухопровод снабжен нагнетательным вентилятором 16, который снабжен приводом 22 с регулятором скорости вращения 23 в виде блока электромагнитных муфт и регулятором температуры 24 с датчиком температуры 25, расположенным на входе в южный 1 воздухопрвод. Регулятор температуры 24 включает блоки сравнения 26 и задания 27, электронный усилитель 28 с блоком нелинейной обратной связи 29, магнитный усилитель 30.

Потребляемые энергозатраты на привод 22 задаются параметрами минимизации общества нагнетательного вентилятора 16 по нормировано подаче воздуха через южный 1 воздухопровод в подпольный 2 воздухопровод в системе гелиотеплохладоснабжения, например при гостированной температуре 20°C (см. например СНиП 2.01.01-92. «Строительная криматология и геофизика. М.: Стройиздат. 1993 г.).

Поступление наружного атмосферного воздуха с пониженной относительно нормированной и особенно отрицательной температурой и, соответственно, повышенной плотности во вход южного 1 воздухопровода приводит к увеличению его массового количества, направляемый в подпольный 2 воздухопровод.

Датчик температуры 25 фиксирует снижение температуры наружного атмосферного воздуха поступающего в качестве всасываемого в нагнетательный вентилятор 16 и сигнал, поступающий в регулятор температуры 24, становится больше, чем сигнал блока задания 27, и на выходе блока сравнения 26 появится сигнал отрицательной полярности, который поступит на вход электронного усилителя 28 одновременно с сигналом блока нелинейной обратной связи 29.

Сигнал с выхода электронного усилителя 28 поступает на вход магнитного усилителя 30, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 23 в виде блока порошковых электромагнитных муфт.

Отрицательная полярность сигнала электронного усилителя 28 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 30. В результате уменьшается момент от привода 22 нагнетательного вентилятора 16, снижая подачу наружного атмосферного воздуха в подпольный 2 воздухопровод до параметров, необходимых для эффективной эксплуатации системы гелиотеплохладоснабжения.

При возрастании температуры наружного атмосферного воздуха и поступающего достижение нормированных значений, датчик температуры 25 фиксирует это изменение и сигнал, поступающий в регулятор температуры 24, становится меньше чем сигнал блока задания 27, и на выходе блока сравнения 26 появится сигнал положительной полярности, который поступит на вход электронного усилителя 28 одновременно с сигналом блока нелинейной и обратной связи 29.

Сигнал с выхода электронного усилителя 28 поступает на вход магнитного усилителя 30, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 23 в виде блока порошковых электромагнитных муфт.

Положительная полярность сигнала электронного усилителя 28 вызывает увеличение тока возбуждения на выходе магнитного усилителя 30. В результате увеличивается момент от привода 22 нагнетательного вентилятора 16, повышая подачу наружного атмосферного воздуха в подпольный 2 воздухопровод до параметров, необходимых для эффективной эксплуатации системы гелиотеплохладоснабжения.

В теплое время года при температурах атмосферного воздуха выше значений температуры, предусмотренных параметрами микроклимата внутри помещения 7, например, 25°C (воздушная заслонка 19 закрыта) атмосферный воздух по южному воздухопроводу 1 нагнетается в подпольный воздухопровод 2 вентилятором 16, установленным в вентиляционной камере 17. Из подпольного воздухопровода 2 по открытой воздушной заслонке 18 атмосферный воздух под избыточным давлением поступает на вход 10 вихревой трубы 9, в которой происходит расслоение на «холодный» (температура несколько ниже входящего в вихревую трубу атмосферного воздуха) и «горячий» (температура несколько выше входящего в вихревую трубу атмосферного воздуха) потоки воздуха. Холодный поток разделенного в вихревой трубе 9 атмосферного воздуха с заданной по условиям микроклимата внутри здания 7 температурой, например, 18°C по холодному каналу 11 вихревой трубы 9 поступает на вход 12 и в фильтр 13, где очищается от твердых частиц загрязнений, а также от жидких частиц сконденсировавшейся в процессе охлаждения парообразной влаги атмосферного воздуха, а, как известно, чем выше температура атмосферного воздуха, тем больше в нем влаги, при этом отделенные загрязнения в фильтре 13 удаляются из него через установку удаления загрязнений, например конденсатоотводчик поплавкового типа. «Горячий» поток атмосферного воздуха по горячему каналу 14 вихревой трубы 9 направляется в грунтовый воздухопровод 5, где охлаждается, отдавая тепло грунту, а сконденсировавшаяся в процессе охлаждения воздуха влага удаляется через теплопроводящие трубы 6 и дренируется в грунте. Охлажденный в грунтовом воздухопроводе 5 воздух поступает к входу 12 фильтра 13, где окончательно очищается от капельнообразных загрязнений и твердых частиц загрязнений, т.е. доводится до параметров, определяемых заданным микроклиматом в помещении 7. Из фильтра 13 обработанный воздух с заданными параметрами по температуре, влажности и степени очистки от твердых частиц поступает внутрь помещения 7.

Воздух из помещения 7 вентилятором 20, установленным в вентиляционной камере 21, направляется в теплообменный воздухопровод 4, где отдает тепло аккумулятору 8, и по северному воздухопроводу 3 выбрасывается в атмосферу.

Размещение вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает дополнительное накопление тепла, выделяемого через корпус вихревой трубы 9, в процессе расслоения обрабатываемого атмосферного воздуха на «холодный» и «горячий» потоки.

В результате тепловой аккумулятор 8 накапливает тепловую энергию, поступающую как от теплообменного воздухопровода 4, так и от корпуса вихревой трубы 9.

При снижении температуры нагнетаемого вентилятором 16 атмосферного воздуха ниже гостированной для заданных условий микроклимата здания 7, например в ночное время температура около 15°C, открывается воздушная заслонка 19 (воздушная заслонка 18 закрыта). Атмосферный воздух по южному воздухопроводу 1 вентилятором 16 через открытую воздушную заслонку 19 подается в фильтр 13, где очищается до заданных условиями микроклимата в помещении 7 параметров. Тепловой аккумулятор 8 отдает тепло всасываемому атмосферному воздуху в подпольном воздухопроводе 2, нагревая его до необходимой температуры. Если тепловой энергии, отдаваемой тепловым аккумулятором 8 атмосферному воздуху, движущемуся по подпольному воздухопроводу 2, недостаточно, то осуществляется подогрев отопительной системой (не указано), затраты которой будут снижены, так как значительная часть тепла поступает от теплового аккумулятора 8 и грунта.

Размещение фильтра 13 после вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает снижение энергоемкости очистки нагнетаемого вентилятором 16 через южный 1 воздухопровод атмосферного воздуха вовнутрь помещения 7 за счет частичной очистки в процессе расслоения обрабатываемого воздуха (часть твердых загрязнений перемещается в горячий поток и дренируется в грунт по теплообменным трубам 6). А также полученное тепло от аккумулятора 8 при низких температурах атмосферного воздуха устраняет возможность обмерзания фильтрующих элементов, приводящего к возрастанию гидравлического сопротивления при температурах атмосферного воздуха, имеющих значение существенно более низкое, чем предусмотрено параметрами микроклимата внутри помещения 7, вихревая труба 9 воздушной заслонкой 18 отключается от подпольного воздухопровода 2. Всасывающий атмосферный воздух нагревается как в южном воздухопроводе 1 за счет использования тепла солнечной радиации (южный воздухопровод выполнен из поглощающего солнечную радиацию материала), так и от теплового аккумулятора 8 в подпольном воздухопроводе 2. В случае недостатка данного тепла для получения заданной температуры воздуха, нагнетаемого вовнутрь помещения 7, применяется отопительная система (не показана) незначительной мощности.

Оригинальность предлагаемого технического решения заключается в том, что автоматизированный контроль и последующее автоматизированное регулирование массовой подачи нагнетательным вентилятором воздуха в подпольный воздухопровод при выполнении регулятора скорости вращения его привода в виде блока порошковых энергомагнитных муфт, соединенного с регулятором температуры, состоящим из блоков задания и сравнения, электронного и магнитного усилителей, а также блока нелинейной обратной связи и датчика температуры поступающего через южный воздухопровод всасываемого атмосферного воздуха обеспечивает снижение энергозатрат на транспортировку воздуха в подпольный воздухопровод, особенно при отрицательных температурах окружающей среды.

Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, "холодным" каналом - с помещением, а "горячим" - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к "холодному" каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, отличающаяся тем, что снабжена термодинамическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом "горячего" потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом "холодного" потока вихревой трубы, выходным своим патрубком - с помещением, южный воздухопровод сообщен с вентилятором, который снабжен приводом с регулятором скорости вращения и регулятором температуры с датчиком температуры, расположенным на входе в южный воздухопровод, кроме того, регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, а регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт.



 

Похожие патенты:

Плоские солнечные коллекторы используются для нагрева воды для бытовых нужд, подогрева воды в бассейне или поддержания низкотемпературного отопления в доме. При благоприятных условиях коллекторы позволяют использовать солнечную энергию даже осенью и зимой.

Универсальное солнечно-энергетическое устройство относится к гелиотехнике, а именно к комбинированным солнечно-энергетическим преобразовательным установкам, удовлетворяющим потребности человека в электричестве, в питьевой воде и в тепле. Оно может быть использовано в приморских районах, в чрезвычайных ситуациях - на судах, в армии, в госпиталях, в условиях изоляции, а также в индивидуальных хозяйствах.
Наверх