Биогазовая установка для переработки навоза

 

Полезная модель относится к сельскому хозяйству, в частности к устройствам для переработки навоза.

Технической задачей предлагаемой полезной модели является снижение энергозатрат при длительной эксплуатации на дежурное освещение /или питание схем автоматизированного контроля и регулирования технологического процесса переработки навоза за счет устранения потребления электрической энергии из общей системы электроснабжения путем ее выработки термоэлектрическим генератором, использующим теплоту теплоносителя, выбрасываемого из трубчатого подогревателя в атмосферу.

Технический результат достигается тем, что биогазовая установка для переработки навоза содержит биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы, подогревателями, перемешивающими устройствами и устройством для сбора и отвода биогаза, при этом биореактор состоит из основной емкости реактора и пяти кольцевых емкостей дозревателей, выполненных из железобетонных конструкций, и на дне каждой емкости установлены трубчатые подогреватели, перегородки кольцевых емкостей дозревателей снабжены переливными окнами, расположенными диаметрально противоположно и на разной глубине, а над биореактором установлен газгольдер, нижний край кольца которого погружен в гидрозатвор, на наружной стороне кольца приварен опорный диск газгольдера, вращающийся на четырех ручейковых роликах, два из которых жестко закреплены в фундаменте, а два являются компенсаторами, кроме того, внутри кольца газгольдера установлены крестообразные распорки, к которым закреплены жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей, при этом перегородки кольцевых емкостей дозревателей выполнены из биметалла, причем материал биметалла перегородки со стороны наличия сброшенного субстрата имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала со стороны последующего дозревателя, при этом жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей соединены с мотор-редуктором, выполненным в виде привода с регулятором скорости вращения, который связан с регулятором температуры и датчиком температуры, расположенным в основной емкости реактора, при этом регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, кроме этого, регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт, кроме того подогреватель соединен с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для теплоносителя и комплекта дифференциальных термопар, причем «горячие концы» дифференциальных термопар расположены внутри проходного канала для теплоносителя, а их «холодные концы» укреплены на внешней поверхности корпуса термоэлектрического генератора, при этом входной патрубок проходного канала для теплоносителя соединен с выходом из трубчатого подогревателя, а выходной патрубок соединен с атмосферой.

Полезная модель относится к сельскому хозяйству, в частности к устройствам для переработки навоза.

Известна биогазовая установка для переработки навоза (см. патент на полезную модель 95454, МПК A01C 3/00, опубл. 10.07.2010), содержащая биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы, подогревателями, перемешивающими устройствами и устройством для сбора и отвода биогаза, при этом биореактор состоит из основной емкости реактора и пяти кольцевых емкостей дозревателей, выполненных из железобетонных конструкций, и на дне каждой емкости установлены трубчатые подогреватели, перегородки кольцевых емкостей дозревателей снабжены переливными окнами, расположенными диаметрально противоположно и на разной глубине, а над биореактором установлен газгольдер, нижний край кольца которого погружен в гидрозатвор, на наружной стороне кольца приварен опорный диск газгольдера, вращающийся на четырех ручейковых роликах, два из которых жестко закреплены в фундаменте, а два являются компенсаторами, кроме того, внутри кольца газгольдера установлены крестообразные распорки, к которым закреплены жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей, при этом перегородки кольцевых емкостей дозревателей выполнены из биметалла, причем материал биметалла перегородки со стороны наличия сброшенного субстрата имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала со стороны последующего дозревания.

Недостатком является снижение качества получаемой продукции при длительной эксплуатации, особенно в изменяющихся погодно-климатических условиях работы биогазовой установки для переработки навоза из-за отсутствия автоматизированного контроля термофильного температурного режима в основной емкости реактора и интенсивности перемешивания субстрата, как в основной емкости реактора, так и пяти кольцевых емкостях дозревателей.

Известна биогазовая установка для переработки навоза (см. патент 2462856, МПК A01C 3/00, опубл. 10.10.2012, Бюл. 28), содержащая биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы, подогревателями, перемешивающими устройствами и устройством для сбора и отвода биогаза, при этом биореактор состоит из основной емкости реактора и пяти кольцевых емкостей дозревателей, выполненных из железобетонных конструкций, и на дне каждой емкости установлены трубчатые подогреватели, перегородки кольцевых емкостей дозревателей снабжены переливными окнами, расположенными диаметрально противоположно и на разной глубине, а над биореактором установлен газгольдер, нижний край кольца которого погружен в гидрозатвор, на наружной стороне кольца приварен опорный диск газгольдера, вращающийся на четырех ручейковых роликах, два из которых жестко закреплены в фундаменте, а два являются компенсаторами, кроме того, внутри кольца газгольдера установлены крестообразные распорки, к которым закреплены жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей, при этом перегородки кольцевых емкостей дозревателей выполнены из биметалла, причем материал биметалла перегородки со стороны наличия сброшенного субстрата имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала со стороны последующего дозревателя, причем жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей соединены с мотор-редуктором, выполненным в виде привода с регулятором скорости вращения, который связан с регулятором температуры и датчиком температуры, расположенным в основной емкости реактора, при этом регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, кроме этого, регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт.

Недостатком является энергоемкость биогазовой установки, обусловленная использованием электроэнергии для дежурного освещения и/или питания схем автоматизированного контроля и регулирования технологического процесса переработки навоза из электрических сетей, что увеличивает себестоимость конечного продукта.

Технической задачей предлагаемой полезной модели является снижение энергозатрат при длительной эксплуатации на дежурное освещение /или питание схем автоматизированного контроля и регулирования технологического процесса переработки навоза за счет устранения потребления электрической энергии из общей системы электроснабжения путем ее выработки термоэлектрическим генератором, использующим теплоту теплоносителя, выбрасываемого из трубчатого подогревателя в атмосферу.

Технический результат достигается тем, что биогазовая установка для переработки навоза содержит биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы, подогревателями, перемешивающими устройствами и устройством для сбора и отвода биогаза, при этом биореактор состоит из основной емкости реактора и пяти кольцевых емкостей дозревателей, выполненных из железобетонных конструкций, и на дне каждой емкости установлены трубчатые подогреватели, перегородки кольцевых емкостей дозревателей снабжены переливными окнами, расположенными диаметрально противоположно и на разной глубине, а над биореактором установлен газгольдер, нижний край кольца которого погружен в гидрозатвор, на наружной стороне кольца приварен опорный диск газгольдера, вращающийся на четырех ручейковых роликах, два из которых жестко закреплены в фундаменте, а два являются компенсаторами, кроме того, внутри кольца газгольдера установлены крестообразные распорки, к которым закреплены жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей, при этом перегородки кольцевых емкостей дозревателей выполнены из биметалла, причем материал биметалла перегородки со стороны наличия сброшенного субстрата имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала со стороны последующего дозревателя, при этом жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей соединены с мотор-редуктором, выполненным в виде привода с регулятором скорости вращения, который связан с регулятором температуры и датчиком температуры, расположенным в основной емкости реактора, при этом регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, кроме этого, регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт, кроме того подогреватель соединен с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для теплоносителя и комплекта дифференциальных термопар, причем «горячие концы» дифференциальных термопар расположены внутри проходного канала для теплоносителя, а их «холодные концы» укреплены на внешней поверхности корпуса термоэлектрического генератора, при этом входной патрубок проходного канала для теплоносителя соединен с выходом из трубчатого подогревателя, а выходной патрубок соединен с атмосферой.

На фиг.1 изображена принципиальная схема биогазовой установки с термоэлектрическим генератором, на фиг.2 - разрез В-В фиг.1, на фиг.3 - перегородка кольцевой емкости дозревателя из биметалла, на фиг.4 - система автоматического контроля температур.

Биогазовая установка включает железобетонную конструкцию, выполненную в виде радиальных пяти кольцевых емкостей дозревателей 1, кольцо гидрозатвора 2, основную емкость реактора 3, трубопровод подачи субстрата 6 с рассекателем 5, трубопровод отвода сброженной массы 4, устройство для отвода биогаза 7, теплоизоляцию 8, трубчатые подогреватели 9 и фундамент 10. Каждая кольцевая перегородка снабжена переливным окном 11 и расположены они диаметрально противоположно на разной глубине. В гидрозатворе установлено стальное кольцо 12 газгольдера 13 с приваренным к нему стальным опорным диском 14, который упирается на два жестко закрепленных в фундаменте ручейковых ролика 15 и два подпружиненных ручейковых ролика компенсатора 16. На кольце 12 газгольдера 13 герметично закреплена прорезиненная ткань газгольдера 13, а внутри кольца установлены стальные крестообразные распорки 17, на которых закреплены жесткая мешалка 18 основной емкости реактора 3 и цепочные мешалки 19 кольцевых емкостей дозревателей 1. Кольцо газгольдера 12 обхвачено тросом 20 и увязано с приводным шкивом 21 мотора-редуктора 22. Перегородки кольцевых емкостей дозревателей 1 выполнены из биметалла 23, причем материал 24 биметалла 23 перегородки со стороны наличия сброшенного субстрата имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала 25 со стороны последующего дозревания. Жесткая мешалка 18 для основной емкости реактора 3 и цепочные мешалки 19 кольцевых емкостей дозревателей 1 соединены с приводным шкивом 21 мотор-редуктора 22, выполненного в виде привода 26 с регулятором скорости вращения 27, который связан с регулятором температуры 28 и датчиком температуры 29, расположенным в основной емкости реактора 3. При этом регулятор температуры 28 включает блоки сравнения 30 и задания 31, электронный 32 и магнитный 33 усилители, блок нелинейной обратной связи 34, кроме этого регулятор скорости вращения 27 выполнен в виде блока порошковых электромагнитных муфт.

Трубчатый подогреватель 9 соединен с термоэлектрическим генератором 35, выполненным в виде корпуса 36 с проходным каналом 37 для теплоносителя и комплекта дифференциальных термопар 38, «горячие» концы 39 которых расположены внутри проходного канала 37 для теплоносителя, а «холодные» концы 40 укреплены на внешней поверхности 41 корпуса 36. При этом вход 42 проходного канала 37 для теплоносителя соединен с выходом трубчатого подогревателя 9, а выход 43 проходного канала 37 соединен с атмосферой (Ат).

Биогазовая установка работает следующим образом.

В качестве теплоносителя в биогазовой установке для поддержания термофильного температурного режима используется, например, выхлопные газы котла, которые поступают как в крытую железобетонную емкость, так и в трубчатые подогреватели 9, поддерживая температуру субстрата около 60°С. Круглосуточный процесс переработки навоза требует дополнительных затрат электрической энергии на дежурное освещение биогазовой установки, а так же на питание системы автоматизированного контроля и регулирования технологического процесса, что повышает себестоимость готовой продукции.

Снижение потребления электрической энергии осуществляется путем использования теплоты, уходящей с теплоносителем из трубчатого подогревателя 9, в термоэлектрическом генераторе 35. Теплоноситель после выхода из трубчатого подогревателя 9 поступает на вход 42 проходного канала 37 для теплоносителя, где контактирует с «горячими» концами 39 комплекта дифференциальных термопар 38, после чего через выход 43 направляется в атмосферу (Ат). В результате контакта теплоносителя с горячими концами 39 комплекта дифференциальных термопар 38, а «холодных» концов 40, расположенных на поверхности 41 корпуса 36, с воздухом помещения, температура которого от 15 до 20°С (в соответствии со СНиП 23-02-92. Строительная климатология. М: Стройиздат, 2001), на каждом элементе комплекта дифференциальных термопар 38 при использовании в качестве термопар, например, хромель-никеля, возникает термо-ЭДС до 6,96 мВ (см., например, Иванова, Г.М. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984. 230 с.) А это позволяет получить напряжение на выходе термоэлектрического генератора 35 напряжение в пределах 12-36 В (см., например, Технические основы теплотехники. Теплотехнический эксперимент. Справочник / под. общ. ред. В.М. Зорина. М.: Энергоатомиздат, 1980. 560 с), что вполне достаточно для дежурного освещения биогазовой установки и/или питания схем автоматизированного контроля и регулирования параметров процесса переработки навоза. Следовательно, применение ранее не используемой теплоты теплоносителя из трубчатых подогревателей 9 для выработки электроэнергии в термоэлектрическом генераторе 35 устраняет дополнительные затраты электрической энергии для дежурного освещения и/или питания схем автоматизированного контроля и регулирования, что снижает энергоемкость переработки навоза и, соответственно, стоимость готового продукта.

В зависимости от погодно-климатических воздействий, обусловленных также изменяющимися значениями наружных температур, выбирается оптимальный термофильный температурный режим, позволяющий производить стерильные кормовые добавки, удобрения и биогаз с обеспечением стабильных условий эксплуатации реактора, для чего и осуществляется контроль температуры в его основной емкости 3 датчиком температуры 29.

Если температура внутри основной емкости реактора 3 соответствует нормированно необходимой для получения качественного газового продукта, то и жесткая мешалка 18, и цепочные мешалки 19 вращаются с заданной скоростью. В этом случае осуществляется следующий технологический процесс.

В течение одних суток с фермы навоз по каналам стекает в отдельно стоящую подготовительную, крытую, железобетонную емкость, в которой подогревается выхлопными газами котла и в ней же доводится до заданной влажности 92% получаемый субстрат, далее субстрат проходит через предварительную камеру, в которой подогревается до 60°С (на физ.1 не показана). Трубчатые подогреватели 9 также нагреты до 60°С. Из биогазовой установки удаляется воздух выхлопными газами двигателя внутреннего сгорания. После этого нагретый субстрат вместе с выращенным определенным штаммом бактерий поступает в основную емкость реактора 3 через трубопровод подачи навозного субстрата 6. Рассекатель 5 равномерно распределяет субстрат в емкости 3, наполнение субстратом основной емкости реактора 3 ведется пять суток. Затем субстрат выдерживается до начала образования процесса газообразования. С момента начала газообразования субстрат выдерживают еще шесть суток. После чего в основную емкость реактора подают следующую односуточную дозу субстрата, при этом из основной емкости реактора 3 сброженный субстрат перетекает через верхнее окно 11 в первую кольцевую емкость дозревателя 1 и заполняет ее. Далее подают следующую односуточную дозу субстрата в основную емкость реактора 3, и субстрат перетекает в первую кольцевую емкость дозревателя 1, перемещается по кольцевой емкости дозревателя и через нижнее окно 11 перетекает в следующую кольцевую емкость дозревателя. В связи с тем, что температура субстрата в первой кольцевой емкости дозревателя 1 имеет более высокое значение, чем в последующем дозревателе, то между внутренней и наружной поверхностями каждой кольцевой перегородки из биметалла 23 с переливным окном 11 возникает разность температур. Выполнение материала 24 биметалла 23 со стороны нагретого сброженного субстрата с коэффициентом теплопроводности (например, алюминий с коэффициентом теплопроводности 204 Вт/(м·°С), см. стр.312. Нащокин В.В. Техническая термодинамика и теплопередача. М.: 1980. 469 с), в 2,0-2,5 раза превышающим коэффициент теплопроводности материала 25 биметалла 23 со стороны последующего дозревания субстрата (например, из латуни с коэффициентом теплопроводности 85 Вт/(м·°С)), приводит, при заданном термофильном температурном режиме получения стиральных добавок и удобрений, к образованию температурного градиента, обеспечивающего термовибрацию кольцевой перегородки с переливным окном 11 (см., например, Дмитриев В.Н. Биметаллы. Пермь, 1990. 387 с), что практически устраняет налипание субстрата при перемещении его из одного дозревателя в другой. Такой цикл повторяется до тех пор, пока не заполнятся все пять кольцевых емкостей дозревателей. Перемешивание субстрата проводится через каждый час по 3-5 минут с помощью жестких мешалок 18 в основной емкости реактора и цепочных мешалок 18 в пяти кольцевых емкостях дозревателя. Мешалки закреплены на крестообразных распорках 17, установленных внутри кольца 12 газгольдера 13. Кольцо 12 с опорным диском 14 вращаются на двух жесткозакрепленных в фундаменте роликах 15 и двух компенсаторах 16 с помощью мотора-редуктора 22 посредством троса 20 со скоростью, обеспечивающей заданную скорость вращения мешалок 18 и 19. Сброженная масса отводится трубопроводом 4 в приемную емкость. Выделяемый биогаз скапливается под газгольдером 13 и отводится устройством для отвода биогаза 7.

Если температура внутри основной емкости реактора 3 уменьшается под воздействием температуры наружного воздуха, то и плотность субстрата возрастает и для его перемешивания требуется большая мощность вращения приводного шкива 21, связанного с мотор-редуктором 22. В этом случае уменьшение температуры в основной емкости реактора 3 фиксируется датчиком температуры 29 и сигнал от него поступает в регулятор температуры 28. При этом сигнал блока задания 31 регулятора температуры 28 превышает сигнал датчика температуры 29 и на выходе блока сравнения 30 появляется сигнал положительной полярности, который поступает на вход электронного усилителя 32. Сюда поступает и сигнал с блока нелинейной обратной связи 34, который вычитается из сигнала блока сравнения 30. За счет этого в электронном усилителе 32 компенсируется нелинейность характеристики привода мотор-редуктора 22. Сигнал с выхода электронного усилителя 32 поступает на вход магнитного усилителя 33, где он усиливается по мощности, выпрямляется и поступает на обмотку регулятора скорости вращения 27 в виде блока порошковых электромагнитных муфт.

Положительная полярность сигнала электронного усилителя 32 вызывает увеличение тока возбуждения на выходе магнитного усилителя 33, тем самым увеличивая передаваемый регулятором скорости вращения момент от привода, чем достигается увеличение скорости вращения приводного шкива 21 и, соответственно, жесткой мешалки 18 основной емкости реактора 3 и цепочных мешалок 19 кольцевых емкостей дозревателей 1, что приводит к качественному перемешиванию субстрата, т.е. в конечном итоге к выходу готового продукта с нормированными параметрами.

Если температура внутри основной емкости реактора 3 увеличивается под воздействием температуры наружного воздуха, то плотность субстрата уменьшается и для его перемешивания требуется меньшая мощность вращения приводного шкива 21, связанного с мотор-редуктором 22. В этом случае уменьшение температуры в основной емкости реактора 3 фиксируется датчиком температуры 29 и сигнал от него поступает в регулятор температуры 28. В этом случае сигнал блока задания 31 регулятора температуры 28 имеет значение меньшее, чем сигнал датчика температуры 29, и на выходе блока сравнения 30 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 32. Сюда поступает сигнал с блока нелинейной обратной связи 34, который дополнительно вычитается из сигнала блока сравнения 30. Сигнал с выхода электронного усилителя 32 поступает на вход магнитного усилителя 33, где он усиливается по мощности, выпрямляется и поступает на обмотку регулятора скорости вращения в виде блока порошковых электромагнитных муфт привода.

Отрицательная полярность сигнала электронного усилителя 32 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 33, тем самым уменьшая передаваемый регулятором скорости вращения момент от привода, чем достигается снижение скорости вращения приводного шкива 21 и, соответственно, жесткой мешалки 18 основной емкости реактора 3 и цепочных мешалок 19 кольцевых емкостей дозревателей 1. Это приводит к снижению энергозатрат при получении готового продукта с обеспечением качественного перемешивания субстрата при его повышенной плотности из-за повышенной температуры наружного воздуха окружающей биогазовую установку среды.

Оригинальность предлагаемой полезной модели заключается в обеспечении при изменяющейся температуре наружного воздуха выхода готового продукта с нормированными параметрами при энергосберегающем процессе переработки навоза путем устранения потребления электрической энергии из общей системы электроснабжения на дежурное освещение и/или питания схем автоматизированного контроля и регулирования технологического процесса переработки навоза за счет использования для выработки электроэнергии теплогенератором теплоты теплоносителя, выбрасываемого из трубчатого подогревателя.

Биогазовая установка для переработки навоза, содержащая биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы, подогревателями, перемешивающими устройствами и устройством для сбора и отвода биогаза, при этом биореактор состоит из основной емкости реактора и пяти кольцевых емкостей дозревателей, выполненных из железобетонных конструкций, и на дне каждой емкости установлены трубчатые подогреватели, перегородки кольцевых емкостей дозревателей снабжены переливными окнами, расположенными диаметрально противоположно и на разной глубине, а над биореактором установлен газгольдер, нижний край кольца которого погружен в гидрозатвор, на наружной стороне кольца приварен опорный диск газгольдера, вращающийся на четырех ручейковых роликах, два из которых жестко закреплены в фундаменте, а два являются компенсаторами, кроме того, внутри кольца газгольдера установлены крестообразные распорки, к которым закреплены жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей, при этом перегородки кольцевых емкостей дозревателей выполнены из биметалла, причем материал биметалла перегородки со стороны наличия сброшенного субстрата имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала со стороны последующего дозревателя, при этом жесткая мешалка для основной емкости реактора и цепочные для кольцевых емкостей дозревателей соединены с мотор-редуктором, выполненным в виде привода с регулятором скорости вращения, который связан с регулятором температуры и датчиком температуры, расположенным в основной емкости реактора, при этом регулятор температуры включает блоки сравнения и задания, электронный и магнитный усилители, блок нелинейной обратной связи, кроме этого, регулятор скорости вращения выполнен в виде блока порошковых электромагнитных муфт, отличающаяся тем, что подогреватель соединен с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для теплоносителя и комплекта дифференциальных термопар, причем "горячие концы" дифференциальных термопар расположены внутри проходного канала для теплоносителя, а их "холодные концы" укреплены на внешней поверхности корпуса термоэлектрического генератора, при этом входной патрубок проходного канала для теплоносителя соединен с выходом из трубчатого подогревателя, а выходной патрубок соединен с атмосферой.



 

Наверх